Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 10

Topic :- MOVING CHARGES AND MAGNETISM

1

5
(a)

Magnetic field inside the conductor $B_{\text {in }} \propto r$ and magnetic field outside the conductor $B_{\text {out }}$ $\propto \frac{1}{r}$
[where r is the distance of observation point from axis]
(b)
$r=\frac{\sqrt{2 m K}}{q B}$ i.e. $r \propto \frac{\sqrt{m}}{q}$
Here kinetic energy K and B are same
$\therefore \frac{r_{e}}{r_{p}}=\sqrt{\frac{m_{e}}{m_{p}}} \times \frac{q_{p}}{q_{e}} \Rightarrow \frac{r_{e}}{r_{p}}=\sqrt{\frac{m_{e}}{m_{p}}}\left[\because q_{e}=q_{p}\right]$
Since $m_{e}<m_{p}$, therefore $r_{e}<r_{p}$
(c)

$$
\begin{aligned}
r & =\frac{m v}{B q} \\
\Rightarrow r & =\frac{v}{B \frac{q}{m}}=\frac{2 \times 10^{5}}{0.05 \times 2.5 \times 10^{7}} \\
& =\frac{2 \times 10^{7}}{12.5 \times 10^{7}}=\frac{200}{12.5} \mathrm{~cm}=16 \mathrm{~cm}
\end{aligned}
$$

(a)

The force per unit length between two parallel wires carrying currents i_{1} and i_{2} separated by a distance R is given by
$\frac{F}{l}=\frac{\mu_{0}}{2 \pi} \frac{i_{1} i_{2}}{2}$
$\Rightarrow \frac{F}{l} \propto \frac{1}{R}$
Hence, graph between force per unit length and distance between wires is a straight line.

(a)

As shown in figure, since $\vec{L}=0$

Hence according to $\vec{F}=i(\vec{L} \times \vec{B}) \Rightarrow \vec{F}=0$
(c)

Current corresponding to the beams of protons and electrons are in opposite direction.
Therefore, both will experience a force of repultion and therefore move more apart.
(a)

From figure it is clear that

$\sin \theta=\frac{d}{r}$ also $r=\frac{p}{q B}$

$$
\therefore \sin \theta=\frac{B q d}{p}
$$

(b)

Magnetic induction at the center of circulre loop
$B=\frac{\mu_{0}}{2} \cdot \frac{n i}{r}$
Magnetic moment of the loop

$$
\begin{aligned}
& M=n i A=\frac{2 B r A}{\mu_{0}} \\
& =\frac{2 \times 0.1 \times 1 \times \pi \times(1)^{2}}{\mu_{0}} \\
& =\frac{0.2 \pi}{\mu_{0}} \quad(\because r=1)
\end{aligned}
$$

9
(a)
$d B=\frac{\mu_{0}(d q)}{2 r}\left(\frac{\omega}{2 \pi}\right)$
$B=\int d B=\frac{\mu_{0} \omega}{4 \pi} \cdot \frac{Q}{\pi R^{2}} 2 \pi \int_{0}^{R} \frac{r d r}{r}$
$B=\frac{\mu_{0} \omega Q}{2 \pi R^{2}} \cdot R$
$B=\frac{\mu_{0} \omega Q}{2 \pi R}$
$B \propto \frac{1}{R}$
(b)

The field at the midpoint of $B C$ due to $A B$ is $\left(-\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{d / 2} \hat{k}\right)$ and the same is due to $C D$.
Therefore the total field is $\left[-\left(\frac{\mu_{0} i}{\pi d}\right) \hat{k}\right]$
(d)
$B=\mu_{0} n i=\mu_{0} \frac{N}{L} i$
(b)
$\frac{\mu_{0}}{4 \pi} \times \frac{2 \pi i}{r}=H \Rightarrow \frac{\left(10^{-7}\right) \times 2 \times 3.142 \times i}{0.05}=7 \times 10^{-5}$
$\therefore i=\frac{7 \times 0.05 \times 10^{-5}}{2 \times 3.142 \times 10^{-7}}=\frac{35}{2 \times 3.142}=5.6 \mathrm{amp}$
(b)
$G=100 \Omega$
$I_{\mathrm{g}}=10^{-5} \mathrm{~A}$
$I=1 \mathrm{~A}$
$S=$?
$I_{\mathrm{g}} \times G=\left(I-I_{\mathrm{g}}\right) \times S$
$S=\left(\frac{I_{\mathrm{g}}}{I-I_{\mathrm{g}}}\right) \times G=\frac{10^{-5}}{1-10^{-5}} \times 100$
Or $=\frac{10^{-3}}{1-0.00001}=10^{-3} \Omega$
(d)

When a charged particle moves inside a uniform magnetic field then the radius of the circular path is
$r=\frac{m v}{B q}=\frac{9.1 \times 10^{-31} \times 3 \times 10^{7}}{5 \times 10^{-4} \times 1.6 \times 10^{-19}}=0.34 \mathrm{~m}=34 \mathrm{~cm}$
(a)

Biot-Savart's law in vector form is given as
$\mathbf{d B}=\frac{\mu_{0}}{4 \pi} i \frac{\mathbf{d} \mathbf{1} \times \mathbf{r}}{r^{3}}$
(b)

Because for inside the pipe $i=0$
$\therefore B=\frac{\mu_{0} i}{2 \pi r}=0$
(b)

For motion of a charged particle in a magnetic field, we have $r=m v / q B$ i.e. $r \propto v$
(c)

Time period of cyclotron is
$T=\frac{1}{v}=\frac{2 \pi m}{e B}$

$$
\begin{aligned}
& B=\frac{2 \pi m}{e} v \\
& R=\frac{m v}{e B}=\frac{p}{e B} \Rightarrow p=e B R=e \times \frac{2 \pi m v}{e} R=2 \pi m v R \\
& \text { K.E. }=\frac{p^{2}}{2 m}=\frac{(2 \pi m v R)^{2}}{2 m}=2 \pi^{2} m v^{2} R^{2}
\end{aligned}
$$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	B	C	A	A	C	A	B	A	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	A	B	B	D	A	B	D	B	C			

