Class: XIIth
Subject : PHYSICS
DPP No. : 1

1. Four charged particles are projected perpendicularly into the magnetic field with equal. Which will have minimum frequency?
a) Proton
b) Electron
c) $\mathrm{Li}^{+}$
d) $\mathrm{He}^{+}$
2. A circular coil carrying a certain current produces a magnetic field $B_{0}$ at its centre. The coil is now rewound so as to have 3 turns and the same current is passed through it. The new magnetic field at the centre is
a) $\frac{B_{0}}{9}$
b) $9 B_{0}$
c) $\frac{B_{0}}{3}$
d) $3 B_{0}$
3. A proton of energy 200 MeV enters the magnetic field of 5 T . If direction of field is from south to north and motion is upward, the force acting on it will be
a) Zero
b) $1.6 \times 10^{-10} \mathrm{~N}$
c) $3.2 \times 10^{-8} \mathrm{~N}$
d) $1.6 \times 10^{-6} \mathrm{~N}$
4. Magnetic fields at two points on the axis of a circular coil at a distance of 0.05 m and 0.2 m from the centre are in the ratio $8: 1$. The radius of the coil is
a) 1.0 m
b) 0.1 m
c) 0.15 m
d) 0.2 m
5. A circular coil of 20 turns and radius 10 cm is placed in uniform magnetic field of 0.10 T normal to the plane of the coil. If the current in coil is 5 A , then the torque acting on the coil will be
a) 31.4 Nm
b) 3.14 Nm
c) 0.314 Nm
d) zero
6. A vertical circular coil of radius 0.1 m and having 10 turns carries a steady current. When the plane of the coil is normal to the magnetic meridian, a neutral point is observed at the centre of the coil. If $B_{H}=0.314 \times 10^{-4}$ the current in the coil is
a) 0.5 A
b) 0.25 A
c) 2 A
d) 1 A
7. A current $i$ flows in a circular coil of radius $r$. If the coil is placed in a uniform magnetic field $B$ with its plane parallel to the field, magnitude of the torque that acts on the coil is
a) Zero
b) $2 \pi r i B$
c) $\pi r^{2} i B$
d) $2 \pi r^{2} i B$
8. Two identical bar magnets are fixed with their centres at a distance $d$ apart. A stationary charge $Q$ is placed at $P$ in between the gap of the two magnets at a distance $D$ from the centre $O$ as shown in the figure


The force on the charge $Q$ is
a) Zero
b) Directed along $O P$
c) Directed along $P O$
d) Directed perpendicular to the plane of paper
9. The proton is energy 1 MeV describes a circular path in plane at right angles to a uniform magnetic field of $6.28 \times 10^{-4} \mathrm{~T}$. The mass of the proton is $1.7 \times 10^{-27} \mathrm{~kg}$. The cyclotron frequency of the proton is very nearly equal to
a) $10^{7} \mathrm{~Hz}$
b) $10^{5} \mathrm{~Hz}$
c) $10^{6} \mathrm{~Hz}$
d) $10^{4} \mathrm{~Hz}$
10. A particle of mass $m$ and charge $q$ is placed at a rest in a uniform electric field $E$ and then released. The kinetic energy attained by the particle after moving a distance y is
a) $q E y^{2}$
b) $q E^{2} y$
c) $q E y$
d) $q^{2} E y$
11. Two particles of equal charges after being accelerated through the same potential difference enter a uniform transverse magnetic field and describe circular path of radii $R_{1}$ and $R_{2}$ respectively. Then the ratio of their masses $\left(M_{1} / M_{2}\right)$ is
a) $\frac{R_{1}}{R_{2}}$
b) $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
c) $\frac{R_{2}}{R_{1}}$
d) $\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)^{2}$
12. A $2 \mu \mathrm{C}$ charge moving around a circle with a frequency of $6.25 \times 10^{12} \mathrm{~Hz}$ produces a magnetic field 6.28 tesla at the centre of the circle. The radius of the circle is
a) 2.25 m
b) 0.25 m
c) 13.0 m
d) 1.25 m
13. Two particles $X$ and $Y$ having equal charges, after being accelerated through the same potential difference, enter a region of uniform magnetic field and describes circular path of radius $R_{1}$ and $R_{2}$ respectively. The ratio of mass of $X$ to that of $Y$ is
a) $\left(R_{1} / R_{2}\right)^{1 / 2}$
b) $R_{2} / R_{1}$
c) $\left(R_{1} / R_{2}\right)^{2}$
d) $R_{1} / R_{2}$
14. The deflection in a moving coil galvanometer is
a) Directly proportional to the torsional
constant
b) Directly proportional to the number of turns in the coil
c) Inversely proportional to the area of the coil d) Inversely proportional to the current flowing
15. A microammeter has a resistance of $100 \Omega$ and full scale range of $50 \mu \mathrm{~A}$. It can be used as a voltmeter of as a higher range ammeter provided a resistance is added to it. Pick the correct range and resistance combinations
a) 50 V range with $10 \mathrm{k} \Omega$ resistance in series
b) 10 V range with $200 \mathrm{k} \Omega$ resistance in series
c) 10 mA range with $1 \Omega$ resistance in parallel
d) 10 mA range with $0.1 \Omega$ resistance in parallel
16. A straight section $P Q$ of a circuit lies along the $X$-axis from $x=\frac{-a}{2}$ to $x=\frac{a}{2}$ and carries a steady current $i$. The magnetic field due to the section $P Q$ at a distance $x=+a$ will be
a) Proportional to $a$
b) Proportional to 1 / $a$
c) Proportional to $a^{2}$
d) Zero
17. A vertical wire carrying a current in the upward direction is placed in horizontal magnetic field directed towards north. The wire will experience a force directed towards
a) North
b) South
c) East
d) West
18. A direct current $I$ flows along the length of an infinitely long straight thin walled pipe, then the magnetic field is
a) Uniform throughout the pipe but not zero
b) Zero only along the axis of the pipe
c) Zero at any point inside the pipe
d) Maximum at the centre and minimum at the edge
19. A current of 1 ampere is passed through a straight wire of length 2.0 metres. The magnetic field at a point in air at a distance of 3 metres from either end of wire and lying on the axis of wire will be
a) $\frac{\mu_{0}}{2 \pi}$
b) $\frac{\mu_{0}}{4 \pi}$
c) $\frac{\mu_{0}}{8 \pi}$
d) Zero
20. When a positively charged particle enters a uniform magnetic field with uniform velocity, its trajectory can be
(1) a straight line
(2) a circle
(3) a helix
a) (1) only
c) (1) or (3)

b) (1) or (2)
d) Any one of (1), (2) and (3)

