Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 1

Topic :-MOVING CHARGES AND MAGNETISM

1
(c)

Frequency $f=\frac{B q}{2 \pi m}$
As proton, electron, $\mathrm{Li}^{+}, \mathrm{He}^{+}$have same charge in magnitude and since magnetic field is also constant.
So, $f \propto \frac{1}{m}$
Among the given charged particles, Li^{+}has highest mass, therefore it will have minimum frequency.
(b)

The magnetic field produced at the centre of the circular coil carrying current is given by
$B=\frac{\mu_{0} N I}{2 r}$
For one turn $N=1$

$$
B_{0}=\frac{\mu_{0} I}{2 r}
$$

As the coil is rewound

$$
\begin{aligned}
r^{\prime} & =\frac{r}{3}, \quad N^{\prime}=3 \\
\therefore B^{\prime} & =\frac{\mu_{0} I \times 3}{2 \times\left(\frac{r}{3}\right)} \\
& =\frac{9 \mu_{0} I}{2 r}=9 B_{0}
\end{aligned}
$$

(b)
$F=q v B$ also kinetic energy $K=\frac{1}{2} m v^{2} \Rightarrow v=\sqrt{\frac{2 K}{m}}$
$\therefore F=q \sqrt{\frac{2 K}{m}} B$
$=1.6 \times 10^{-19} \sqrt{\frac{2 \times 200 \times 10^{6} \times 1.6 \times 10^{-19}}{1.67 \times 10^{-27}}} \times 5=1.6 \times 10^{-10} N$
(b)
$B=\frac{\mu_{0}}{4 \pi} \times \frac{2 \pi N i R^{2}}{\left(R^{2}+x^{2}\right)^{3 / 2}} \Rightarrow B \propto \frac{1}{\left(r^{2}+x^{2}\right)^{3 / 2}}$
$\Rightarrow \frac{8}{1}=\frac{\left(R^{2}+x_{2}^{2}\right)^{3 / 2}}{\left(R^{2}+x_{1}^{2}\right)^{3 / 2}} \Rightarrow\left(\frac{8}{1}\right)^{2 / 3}=\frac{R^{2}+0.04}{R^{2}+0.0025}$
$\Rightarrow \frac{4}{1}=\frac{R^{2}+0.04}{R^{2}+0.0025}$. On solving $R=0.1 \mathrm{~m}$
(d)

Torque (τ) acting on a loop placed in a magnetic field B is given by $\tau=n B I A \sin \theta$
Where A is area of loop, I the current through it, n the number of turns, and θ the angle which axis of loop makes with magnetic field B.
Since, magnetic field (B) of coil is parallel to the field applied, hence $\theta=0^{\circ}$ and $\sin 0^{\circ}=0$
$\therefore \tau=0$

(a)

Magnetic field at the centre of circular coil

$$
B_{H}=\frac{\mu_{0}}{4 \pi} \frac{2 \pi n I}{r}
$$

I and r being the current and radius of circular coil respectively.
or $I=\frac{4 \pi}{\mu_{0}}=\frac{r B_{H}}{2 \pi n}$

$$
=\frac{10^{7} \times 0.1 \times 0.314 \times 10^{-4}}{2 \times 3.14 \times 10}=0.5 \mathrm{~A}
$$

(c)

As shown in the following figure, the given situation is similar to a bar magnet placed in a uniform magnetic field perpendicularly. Hence torque on it
$\tau=M B \sin 90^{\circ}=\left(i \pi r^{2}\right) B$

(d)

Cyclotron frequency is given by

$$
\begin{aligned}
v & =\frac{q B}{2 \pi m} \\
\therefore v & =\frac{1.6 \times 10^{-19} \times 6.28 \times 10^{-4}}{2 \times 3.14 \times 1.7 \times 10^{-27}} \\
& =0.94 \times 10^{4} \approx 10^{4} \mathrm{~Hz}
\end{aligned}
$$

(c)

Force on the charged particle in electric field, $F=q E$; acceleration of particle, $a=F / m=$ $q E / m$; using the relation $v^{2}=u^{2}+2 a$, we have $v^{2}=0+2(q E / m) y$
Or $\frac{1}{2} m v^{2}=q E y$; so KE is $q E y$.
(b)

Radius of circular path
$R=\frac{m v}{q B}$
But $m v=\sqrt{2 m q V}$
$\therefore R=\frac{\sqrt{2 m q V}}{q B}$ or $R \propto \sqrt{m}$
or $\frac{R_{1}^{2}}{R_{2}^{2}}=\frac{M_{1}}{M_{2}}$
or $\frac{M_{1}}{M_{2}}=\frac{R_{1}^{2}}{R_{2}^{2}}=\left(\frac{R_{1}}{R_{2}}\right)^{2}$
(d)

The charge moving on a circular orbit acts like the current loop. Magnetic field at the centre of the current loop is $B=\frac{\mu_{0} 2 \pi I}{4 \pi R}$
$B=\frac{\mu_{0} 2 \pi q v}{4 \pi R}$ or $R=\frac{\mu_{0} 2 \pi q v}{4 \pi B}$
Substituting the given values, we get
$R=\frac{4 \pi \times 10^{-7} \times 2 \pi \times 2 \times 10^{-6} \times 6.25 \times 10^{12}}{4 \pi \times 6.28}=1.25 \mathrm{~m}$
(c)

As, $q V=\frac{1}{2} m v^{2}$ or $v=\sqrt{\frac{2 q V}{m}}$; when particle describes a circular path of radius R in the magnetic field
$q v B=\frac{m v^{2}}{R} \quad$ or $\quad R=\frac{m v^{2}}{q v B}=\frac{m v}{q B}$
Or $R=\frac{m}{q B} \sqrt{\frac{2 q V}{m}}=\frac{1}{B} \sqrt{\frac{2 V m}{q}}$
ie, $\quad R \propto \sqrt{m} \quad \therefore \frac{m_{x}}{m_{y}}=\left(\frac{R_{1}}{R_{2}}\right)^{2}$
(b)
$i=\frac{k}{n B A} \theta \quad$ or $\theta=\frac{n B A}{k} i e, \theta \propto n$.
(b)

To convert a galvanometer into a voltmeter, a resistance $R=\frac{V}{i_{g}}-G$ is connected in series of it.
To convert galvanometer into an ammeter, a resistance $S=i_{\mathrm{g}} G /\left(i-i_{\mathrm{g}}\right)$ is to be connected in parallel of galvanometer.
(d)

For a point at a distance $x=+a$, the angle between $d \vec{I}$ and \vec{r} is zero. Hence, $d \vec{I} \times \overrightarrow{\mathrm{r}}=0$.
(d)

By Fleming's left hand rule
(c)

Required arrangement is shown in figure. According to Ampere's circuital law
$B_{\text {out }}=\frac{m_{0}}{4 p} \frac{2 I}{r}$

For an internal point, $r<R$
$B_{\text {internal }}=\frac{\mu_{0}(0)}{2 \pi r}=0$
For a point on the pipe, $r=R$
$B=\frac{\mu_{0} I}{2 \pi r}$
For an external point, $r<R$
$B_{\text {external }}=\frac{\mu_{0} I}{2 \pi r}$
Therefore, option (c) is correct.
(d)

The magnetic field at any point on the axis of wire be zero

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10

A.	C	B	B	B	D	A	C	A	D	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	B	D	C	B	B	D	D	C	D	D

