

$$F^{2} = F_{1}^{2} + F_{2}^{2} + 2F_{1}F_{2}\cos90^{\circ}$$

or $F^{2} = F_{1}^{2} + F_{2}^{2} \Rightarrow F = \sqrt{F_{1}^{2} + F_{2}^{2}}$

6

For uniform circular motion $a_t = 0$

$$a_r = \frac{v^2}{r} \neq 0$$

(c)

(c)

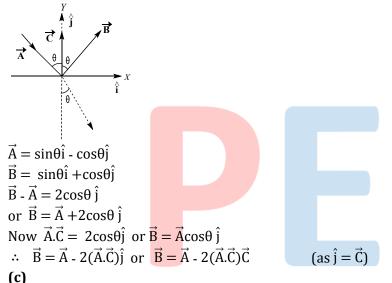
(d)

7

 $F = m\omega^2 R : F \propto R$ (*m* and ω are constant) If radius of the path is halved, then force will also become half

8

Let \vec{A}, \vec{B} and \vec{C} be as shown in figure. Let θ be the angle of incidence, which is also equal to the angle of reflection. Resolving these vectors in rectangular components, we have



9

When a stone tied at the end of string is rotated in a circle, the velocity of the stone at an instant acts tangentially outwards the circle. When the string is released, the stone files off tangentially outwards *ie*, in the direction of velocity

10

(c)

In projectile motion given angular projection, the horizontal component velocity remains unchanged. Hence

 $v\cos \alpha = u\cos \theta$ or $v = u\cos \theta \sec \alpha$

$$s = 0 \times 1 + \frac{1}{2} \times 9.8 \times 1 \times 1 = 4.9 m$$

Minimum speed at the highest point of vertical circular path $v = \sqrt{gR}$

13 **(c)**

When $\theta = 180^\circ$, the particle will be at diametrically opposite point, where its velocity is opposite to the initial directions of motion. The change in momentum = mv - (-mv) = 2 mv (maximum). When $\theta = 360^\circ$, the particle is at the initial position with momentum m.

Change in momentum mv - mv = 0 (minimum) (d)

14

$$R = 4H\cot\theta$$
, if $\theta = 45^{\circ}$ then $R = 4H \Rightarrow \frac{R}{H} = \frac{4}{1}$

16

(b)

Maximum tension in the thread is given by

$$T_{\max} = mg + \frac{mv^2}{r}$$

or $T_{\max} = mg + mrw^2$ (: $v = r\omega$)
or $\omega^2 = \frac{T_{\max} - mg}{mr}$
Given, $T_{\max} = 37$ N, m = 500g = 0.5 kg, $g = mg^{-2}$,
 $r = 4m$
 $\therefore \omega^2 = \frac{37 - 0.5 \times 10}{0.5 \times 4} = \frac{37 - 5}{2}$
or $\omega^2 = 16$
or $\omega = 4$ rad s⁻¹

17

(a)

$$mg = 1 \times 10 = 10N, \frac{mv^2}{r} = \frac{1 \times (4)^2}{1} = 16$$

Tension at the top of circle $= \frac{mv^2}{r} \cdot mg = 6N$
Tension at the bottom of circle $= \frac{mv^2}{r} + mg = 26N$
(b)

18

Let *v* be the velocity acquired by the body at *B* which will be moving making an angle 45° with the horizontal direction. As the body just crosses the well so $\frac{v^2}{g} = 40$

or
$$v^2 = 40g = 40 \times 10 = 400$$

or $v = 20 \text{ ms}^{-1}$

Taking motion of the body from *A* to *B* along the inclined plane we have

$$u = v_{0}a = -g \sin 45^{\circ} = -\frac{10}{\sqrt{2}} \text{ ms}^{-2}$$

$$s = 20\text{m}, v = 20\text{ms}^{-1}$$

As $v^{2} = u^{2} + 2as$

$$\therefore 400 = v_{0}^{2} + 2\left(-\frac{10}{\sqrt{2}}\right) \times 20\sqrt{2}$$

or $v_{0}^{2} = 400 + 400 = 800$ or $v = 20\sqrt{2}\text{ms}^{-1}$

19

Centripetal force

$$\frac{mv^2}{R} = ma$$

or $a = \frac{v^2}{R}$

(a)

$$\therefore \quad \frac{a_1}{a_2} = \frac{v_1^2}{v_2^2}$$

Here, $v_1 = v$, $v_2 = 2v$, $a_1 = a$
$$\therefore \quad \frac{a}{a_2} = \frac{v^2}{(2v)^2} = \frac{1}{4}$$

or $a_2 = 4a$
(c)

 $L = I\omega$. In U.C.M. ω = constant \therefore L = constant.

20

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
А.	А	А	А	A	В	С	С	D	С	С
Q.	11	12	13	14	15	16	17	18	19	20
А.	D	D	С	D	А	В	А	В	А	С

