CLASS : XITh
Solutions
SUBJECT : PHYSICS
DPP NO. : 9

Topic :- MOTION IN A PLANE

1
(a)
$R=m g \cos \theta-\frac{m v^{2}}{r}$

When θ decreases $\cos \theta$ increases i.e., R increases

2
(a)

Area of parallelogram $=|A \times B|$
$A B \sin \theta=\frac{1}{2} A B$
$\therefore \sin \theta=\frac{1}{2}, \theta=30^{\circ}$
(a)

$$
\begin{aligned}
& \overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}=\left|\begin{array}{lll}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
0 & 4 & 0 \\
2 & 3 & 1
\end{array}\right| \\
& =\hat{\mathrm{i}}[4-0]+\hat{\mathrm{j}}[0-0]+\hat{\mathrm{k}}[0-8]=4 \hat{\mathrm{i}}-8 \hat{\mathrm{k}}
\end{aligned}
$$

(a) remain constant
Tension at lowest point $T_{\text {max }}=\frac{m v^{2}}{r}+m g$
Tension at highest point $T_{\text {min }}=\frac{m v^{2}}{r}-m g$
$\frac{T_{\max }}{T_{\min }}=\frac{\frac{m v^{2}}{r}+m g}{\frac{m v^{2}}{r}-m g}=\frac{5}{3}$
By solving we get, $v=\sqrt{4 g r}=\sqrt{4 \times 9.8 \times 2.5}=\sqrt{98} \mathrm{~m} / \mathrm{s}$
(b)

In this problem it is assumed that particle although moving in a vertical loop but its speed
$F^{2}=F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos 90^{\circ}$
or $F^{2}=F_{1}^{2}+F_{2}^{2} \Rightarrow F=\sqrt{F_{1}^{2}+F_{2}^{2}}$
(c)

For uniform circular motion $a_{t}=0$
$a_{r}=\frac{v^{2}}{r} \neq 0$
(c)
$F=m \omega^{2} R \therefore F \propto R(m$ and ω are constant)
If radius of the path is halved, then force will also become half (d)

Let \vec{A}, \vec{B} and \vec{C} be as shown in figure. Let θ be the angle of incidence, which is also equal to the angle of reflection. Resolving these vectors in rectangular components, we have

$\overrightarrow{\mathrm{A}}=\sin \theta \hat{\mathrm{i}}-\cos \theta \hat{\mathrm{j}}$
$\vec{B}=\sin \theta \hat{i}+\cos \theta \hat{j}$
$\vec{B}-\vec{A}=2 \cos \theta \hat{j}$
or $\vec{B}=\vec{A}+2 \cos \theta \hat{j}$
Now $\vec{A} \cdot \vec{C}=2 \cos \theta \hat{j}$ or $\vec{B}=\vec{A} \cos \theta \hat{j}$
$\therefore \quad \vec{B}=\vec{A}-2(\vec{A} \cdot \vec{C}) \hat{j}$ or $\vec{B}=\vec{A}-2(\vec{A} \cdot \vec{C}) \vec{C}$
(c)

When a stone tied at the end of string is rotated in a circle, the velocity of the stone at an instant acts tangentially outwards the circle. When the string is released, the stone files off tangentially outwards ie, in the direction of velocity
(c)

In projectile motion given angular projection, the horizontal component velocity remains unchanged. Hence
$v \cos \alpha=u \cos \theta$ or $v=u \cos \theta \sec \alpha$
(d)
$\mathrm{s}=0 \times 1+\frac{1}{2} \times 9.8 \times 1 \times 1=4.9 \mathrm{~m}$
(d)

Minimum speed at the highest point of vertical circular path $v=\sqrt{g R}$
(c)

When $\theta=180^{\circ}$, the particle will be at diametrically opposite point, where its velocity is opposite to the initial directions of motion. The change in momentum $=m v-(-m v)=2$ $m v$ (maximum). When $\theta=360^{\circ}$, the particle is at the initial position with momentum m.

Change in momentum $m v-m v=0$ (minimum)
(d)
$R=4 H \cot \theta$, if $\theta=45^{\circ}$ then $R=4 H \Rightarrow \frac{R}{H}=\frac{4}{1}$
(b)

Maximum tension in the thread is given by
$T_{\max }=m g+\frac{m v^{2}}{r}$
or $T_{\text {max }}=m g+m r w^{2} \quad(\because v=r \omega)$
or $\omega^{2}=\frac{T_{\text {max }}-m g}{m r}$
Given, $\quad T_{\text {max }}=37 \mathrm{~N}, \mathrm{~m}=500 \mathrm{~g}=0.5 \mathrm{~kg}, g=\mathrm{mg}^{-2}$,
$r=4 \mathrm{~m}$
$\therefore \quad \omega^{2}=\frac{37-0.5 \times 10}{0.5 \times 4}=\frac{37-5}{2}$
or $\omega^{2}=16$
or $\omega=4 \mathrm{rad} \mathrm{s}^{-1}$
$\therefore \quad \frac{a_{1}}{a_{2}}=\frac{v_{1}^{2}}{v_{2}^{2}}$
Here, $v_{1}=v, v_{2}=2 v, a_{1}=a$
$\therefore \frac{a}{a_{2}}=\frac{v^{2}}{(2 v)^{2}}=\frac{1}{4}$
or $a_{2}=4 a$
20
(c)
$L=I \omega$. In U.C.M. $\omega=$ constant $\therefore L=$ constant.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	A	A	A	B	C	C	D	C	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	D	C	D	A	B	A	B	A	C		

