CLASS : XITh
DATE :

Topic:-MOTIONIN APLANE

1
(c)
$a_{T}=\frac{d v}{d t}=\frac{d}{d t}(2 t)=2 \mathrm{~m} / \mathrm{s}^{2}$
$a_{c}=\frac{V^{2}}{r}=\frac{(2 \times 3)^{2}}{30 \times 10^{-2}}=120 \mathrm{~m} / \mathrm{s}^{2}$

2

3

4
(d)

Let $\overrightarrow{\mathbf{u}}_{1}$ and $\overrightarrow{\mathbf{u}}_{\mathbf{2}}$ be the initial velocities of the two particles and θ_{1} and θ_{2} be their angles of projection with the horizontal
The velocities of the two particles after time t are,
$\overrightarrow{\mathbf{v}}_{1}=\left(u_{1} \cos \theta_{1}\right) \hat{\mathbf{i}}+\left(u_{1} \sin \theta_{1-g} t\right) \hat{\mathbf{j}}$ and
$\overrightarrow{\mathbf{v}}_{1}=\left(u_{1} \cos \theta_{1}\right) \hat{\mathbf{i}}+\left(u_{2} \sin \theta_{2}-\mathrm{g} t\right) \hat{\mathbf{j}}$
Their relative velocity is $\overrightarrow{\mathbf{v}}_{12}=\overrightarrow{\mathbf{v}}_{1}-\overrightarrow{\mathbf{v}}_{2}$
$=\left(u_{1} \cos \theta_{1}-u_{2} \cos \theta_{1}\right) \hat{\mathbf{i}}+\left(u_{1} \sin \theta_{1}-u_{2} \sin \theta_{2}\right) \hat{\mathbf{j}}$
Which is a constant. So the path followed by one, as seen by the other is a straight line, making a constant angle with the horizontal
(c)

Centripetal force is provided by friction, so
$\frac{m v^{2}}{r}<f_{L} i e, \frac{m v^{2}}{r}<\mu m g$
i.e, $v<\sqrt{\mu g r}$ so that, $v_{\max }=\sqrt{\mu g r}$

Here, $\mu=0.4, r=30 \mathrm{~m}$ and $g=10 \mathrm{~ms}^{-2}$
$\therefore v_{\text {max }}=\sqrt{0.4 \times 30 \times 10}=11 \mathrm{~m} / \mathrm{s}$
(c)
$P+Q=16$
$P^{2}+Q^{2}+2 P Q \cos \theta=64$
$\tan 90^{\circ}=\frac{Q \sin \theta}{P+Q \cos \theta}$
$\infty=\frac{Q \sin \theta}{P+Q \cos \theta}$
$\Rightarrow P+Q \cos \theta=0$ or $Q \cos \theta=-P$
From Eq. (ii)
$P^{2}+Q^{2}+2 P(-P)=64$ or $Q^{2}-P^{2}=64$
or $(Q-P)(Q+P)=64$
or $Q-P=\frac{64}{16}=4$
Adding Eq. (i) and (iii), we get
$2 Q=20$ or $Q=10$ units
From (i), $P+10=16$ or $P=6$ units
(c)

Let A and B be the two forces. As per question
$\sqrt{A^{2}+B^{2}}=5$
or $A^{2}+B^{2}=25$
and $A^{2}+B^{2}+2 A B \cos 120^{\circ}=13$
or $25+2 A B \times(-1 / 2)=13$
or $A B=25-13=12$
or $2 A B=24$
(ii)

Solving (i) and (ii), we get
$A=3 \mathrm{~N}$
and $B=4 \mathrm{~N}$
(a)

Range of the projectile on an inclined plane (down the plane) is,
$R=\frac{u^{2}}{\operatorname{gcos}^{2} \beta}[\sin (2 \alpha+\beta)+\sin \beta]$
Here, $u=v_{0}, \alpha=0$ and $\beta=\theta$
$\therefore R=\frac{2 v_{0}^{2} \sin \theta}{\mathrm{~g} \cos ^{2} \theta}$

Now $x=R \cos \theta=\frac{2 v_{0}^{2} \tan \theta}{\mathrm{~g}}$
and $y=-R \sin \theta=-\frac{2 v_{0}^{2} \tan ^{2} \theta}{\mathrm{~g}}$
(c)

The result follows from the definition of cross product.
(d)

Maximum height attained is given by
$h_{\text {max }}=\frac{u^{2}}{2 g}$
Given, $u=20 \mathrm{~ms}^{-1}$
$h_{\text {max }}=\frac{(20)^{2}}{2 \times 10}=20 \mathrm{~m}$
For the second body also $\mathrm{h}_{\text {max }}=20 \mathrm{~m}$
\therefore Sum of maximum height $=20 \mathrm{~m}+20 \mathrm{~m}=40 \mathrm{~m}$
(a)
$\frac{a_{R}}{a_{r}}=\frac{\omega_{R \times R}^{2}}{\omega_{r}^{2} \times r}=\frac{T_{r}^{2}}{T_{R}^{2}} \times \frac{R}{r}=\frac{R}{r}\left[A s T_{r}=T_{R}\right]$
(b)
$v=r \omega=20 \times 10 \mathrm{~cm} / \mathrm{s}=2 \mathrm{~m} / \mathrm{s}$
(d)

Tension at the top of the circle
$T=m \omega^{2} r-m g$
$T=0.4 \times 4 \pi^{2} n^{2} \times 2-0.4 \times 9.8$
$=115.86 \mathrm{~N}$
(c)
$x=20 \times 5=100 \mathrm{~m}$
$y=\frac{1}{2} \times 10 \times 5 \times 5=125 \mathrm{~m}$
$r=\sqrt{100^{2}+125^{2}}=160 \mathrm{~m}$
(a)

Initial angular velocity $\omega_{0}=0$. Final angular velocity $\omega=\frac{v}{r}=\frac{80}{(20 / \pi)}=4 \pi \mathrm{rad} \mathrm{s}^{-1}$
angle described, $\theta=4 \pi \mathrm{rad}$
\therefore Angular acceleration, $\alpha=\frac{\omega^{2}-\omega_{0}^{2}}{2 \theta}$
$=\frac{(4 \pi)^{2}-0}{2 \times 4 \pi}=2 \pi \mathrm{rad} \mathrm{s}^{-2}$
Linear acceleration, $a=\alpha r$
$=2 \pi \times \frac{20}{\pi}=40 \mathrm{~ms}^{-2}$
(b)

Maximum height $H=\frac{v^{2} \cos ^{2} \beta}{2 g}$
or $v \cos \beta=\sqrt{2 g H}$
$t=\frac{v \cos \beta}{g}=\frac{\sqrt{2 g H}}{g}$
$t=\sqrt{\frac{2 H}{g}}$
(d)

In figure, $\sin 30^{\circ}=\frac{A B}{O A}$

or $O A=\frac{A B}{\sin 30^{\circ}}=\frac{4}{1 / 2}=8 \mathrm{~m}$
$\frac{T}{A O}=\frac{F}{A B}=\frac{m g}{O B}$
$F=\frac{A O}{A B} \times F=\frac{A O}{A B} \frac{m v^{2}}{r}=\frac{8}{4} \times 10 \times \frac{5^{2}}{4} \approx 125 \mathrm{~N}$
(b)

If any two vectors are parallel or equal, then the scalar triple product is zero.
(c)

The body crosses the top most position of a vertical circle with critical velocity, so the velocity at the lowest point of vertical circle $u=\sqrt{5 \mathrm{~g} r}$
Velocity of the body when string is horizontal is
$v^{2}=u^{2}-2 \mathrm{~g} r=5 \mathrm{~g} r-2 \mathrm{~g} r=3 \mathrm{~g} r$
\therefore Centripetal acceleration $=\frac{v^{2}}{r}=\frac{3 \mathrm{~g} r}{r}=3 \mathrm{~g}$
(a)

To avoid slipping friction force
$F=\frac{m v^{2}}{r}$
$F=\frac{2000 \times 10 \times 10}{20}=10^{4} \mathrm{~N}$
(a)

Let $\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{R}}$. Given $A_{x}=7$ and $A_{y}=6$
Also $R_{x}=11$ and $R_{y}=9$. Therefore,
$B_{x}=R_{x}-A_{x}=11-7=4$
and $B_{y}=R_{y}-A_{y}=9-6=3$
Hence, $B=\sqrt{B_{x}^{2}+B_{y}^{2}}=\sqrt{4^{2}+3^{2}}=5$
(c)

Instantaneous velocity of rising mass after t sec will be
$v_{t}=\sqrt{v_{x}^{2}+v_{y}^{2}}$
Where $v_{x}=v \cos \theta=$ Horizontal component of velocity
$v_{y}=v \sin \theta-g t=$ Vertical component of velocity
$v_{t}=\sqrt{(v \cos \theta)^{2}+(v \sin \theta-g t)^{2}}$
$v_{t}=\sqrt{v^{2}+g^{2} t^{2}-2 v \sin \theta g t}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	D	C	C	C	A	C	D	A	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	C	A	B	D	B	C	A	A	C			

