

CLASS : XITH DATE :

SUBJECT : PHYSICS DPP NO. : 6

Topic :- MOTION IN A PLANE

1.	A projectile is fired wi projectile when its dir	th a velocity <i>v</i> at an angl ection of motion makes	le θ with the horizontal. an angle β with the horizon	The speed of the zontal is	
		$D J V \cos \theta \cos \beta$		uj <i>v</i> cos o tali p	
2.	A body is projected with speed $v \text{ ms}^{-1}$ at angle θ . The kinetic energy at the highest point is hal of the initial kinetic energy. The value of θ is				
	a) 30°	b)45°	c) 60°	d)90°	
3.	The range of particle wr range of projectile wh	tal is 1.5 km. What is the			
	a) 3.0 km	b) 1.5 km	c) 6.0 km	d) 0.75 km	
4.	In a vertical circle of ra just able to complete t a) Highest point c) Any point	adius <i>r,</i> at what point in he ve <mark>rtical</mark> circle	its path a particle has te b) Lowest point d) At a point horizonta circle of radius <i>r</i>	nsion equal to zero if it is illy from the centre of	
5.	A particle comes roun velocity of motion is	a particle comes round a circle of radius $1 m$ once. The time taken by it is $10 sec$. The average velocity of motion is			
	a) $0.2 \pi m/s$	b)2 <i>πm/s</i>	c) 2 <i>m/s</i>	d)Zero	
6.	6. A car of mass 1000 kg negotiates a banked curve of radius 90 <i>m</i> on a frictionless rebanking angle is 45°. the speed of the car is				
	a) $20ms^{-1}$	b) $30ms^{-1}$	c) 5 <i>ms</i> ⁻¹	d)10 <i>ms</i> ⁻¹	
7.	What is the unit vector	r along $\hat{i} + \hat{j}$?			
	a) $\frac{i+j}{\sqrt{2}}$	b) $\sqrt{2}(\hat{i}+\hat{j})$	c) $\hat{i} + \hat{j}$	d) ƙ	

- 8. The speed limit of a car over a roadways bridge in the form of a vertical arc is 9.8 ms⁻¹. The diameter of the are is
 a) 19.6 m
 b) 9.8 m
 c) 39.2 m
 d) 4.9 m
- 9. A body is acted upon by a constant force directed towards a fixed point. The magnitude of the force varies inversely as the square of the distance from the fixed point. What is the nature of the path?

a) Straight line	b) Parabola	c) Circle	d) Hyperbola
------------------	-------------	-----------	--------------

10. The figure shows a circular path of a moving particle. If the velocity of the particle at same instant is $\mathbf{v} = -3\hat{\mathbf{i}} - 4\hat{\mathbf{j}}$, through which quadrant is the particle moving when clockwise and anti-clockwise respectively

11. A car is moving along a straight horizontal road with a speed v_0 . If the coefficient of friction between tyres and the road is μ , the shortest distance in which the car can be stopped is

v_0^2	v_0	$(v_0)^2$	v_0
a) $\frac{v_0}{2v_0}$	b) $\frac{0}{112}$	c) $\left(\frac{1}{\mu q}\right)$	d) $\frac{1}{a}$
zμg	μg	(μg)	μ

- 12. A particle moves in a circle of radius 5 *cm* with constant speed and time period 0.2 πs . The acceleration of the particle is a) 5 m/s^2 b) 15 m/s^2 c) 25 m/s^2 d) 36 m/s^2
- 13. A 500 kg car takes a round turn of radius 50 m with a velocity of 36 km/hr. The centripetal force is
 a) 250 N
 b) 750 N
 c) 1000 N
 d) 1200 N
- 14. A road of 10 m width has radius of curvature 50 m. Its outer edge is raised above the inner edge by a distance of 1.5 m. The road is most suited for vehicles moving with velocity of a) 8.5 ms⁻¹ b) 6.5 ms⁻¹ c) 5.5 ms⁻¹ d) None of these

15. A plane surface is inclined making an angle θ with the horizontal. Form the bottom of this inclined plane, a bullet is fired with velocity *v*. The maximum possible range of the bullet on the inclined plane is

a)
$$\frac{v^2}{g}$$
 b) $\frac{v^2}{g(1+\sin\theta)}$ c) $\frac{v^2}{g(1-\sin\theta)}$ d) $\frac{v^2}{g(1+\sin\theta)^2}$

16. The maximum range of a gun on horizontal terrain is 16 km. If g = 10 m/s². What must be the muzzle velocity of the shell
a) 200 m/s
b) 400 m/s
c) 100 m/s
d) 50 m/s

17. A man projects a coin upwards from the gate of a uniformly moving train. The path of coin for the man will be

a) Parabolic b) inclined straight i	ine
c) Vertical straight line d) Horizontal straight	nt line

18. Three vectors \vec{A} , \vec{B} and \vec{C} satisfy the relation $\vec{A} \cdot \vec{B} = 0$ and $\vec{A} \cdot \vec{C} = 0$. If \vec{B} and \vec{C} are not lying in the same plane then \vec{A} is parallel to a) \vec{B} b) \vec{C} c) $\vec{B} \times \vec{C}$ d) $\vec{B} \cdot \vec{C}$

^{19.} The equation of motion of a projectile is $y = 12x - \frac{3}{4}x^2$. The horizontal component of velocity is $3ms^{-1}$. What is the range of the projectile? a) 18 m b) 16 m c) 12 m d) 21.6 m

20. Two cars of masses m_1 and m_2 are moving in circles of radii r_1 and r_2 respectively. Their speeds are such that they make complete circles in the same time t. The ratio of their centripetal acceleration is a) $m_1r_1:m_2r_2$ b) $m_1:m_2$ c) $r_1:r_2$ d) 1:1