

CLASS: XITH DATE:

SUBJECT : PHYSICS

DPP NO.: 4

Topic:-MOTION IN A PLANE

1.	Given that centripetal f a) $-k/r^2$	Force $F = -k/r^2$. The tot b) k/r	al energy is c) $-k/2r^2$	d) $-k/2r$			
	,,	- J J		2,,			
2.	The area of parallelogram formed from the vectors $\vec{A} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{B} = 3\hat{i} - 2\hat{j}$ adjacent sides is						
	a) $8\sqrt{3}$ units	b) 64 units	c) 32 units	d) $4\sqrt{6}$ units			
3.	Two vectors \vec{A} and \vec{B} are inclined to each other at an angle θ . Which of the following is the unit vector perpendicular to both \vec{A} and \vec{B} ?						
	a) $\frac{\vec{A} \times \vec{B}}{\vec{A} \cdot \vec{B}}$	b) $\frac{\hat{A} \cdot \hat{B}}{\sin \theta}$	c) $\frac{\vec{A} \times \vec{B}}{AB\sin\theta}$	$d)\frac{\hat{A} \times \hat{B}}{AB\cos\theta}$			
4.	A coastguard ship locates a pirate ship at a distance $560 m$. It fires a cannon ball with an initial speed $82 m/s$. At what angle from horizontal the ball must be fired so that it hits the pirate ship a) 54° b) 125° c) 27° d) 18°						
5.	What happens to the co	That happens to the centripetal acceleration of a particle, when its speed is doubled and any angular velocity is halved?					
	a) Doubled		b) Halved				
	c) Remains unchanged		d) Becomes 4 times				
6.	A particle moves in a circular path with decreasing speed. Choose the correct statement a) Angular momentum remains constant b) Acceleration (\vec{a}) is towards the centre c) Particle moves in a spiral path with decreasing radius d) The direction of angular momentum remains constant						
7.	An object is projected so that its horizontal range R is maximum. If the maximum height attained by the object is H , then the ratio of R/H is						
	a) 4	b) $\frac{1}{4}$	c) 2	$d)\frac{1}{2}$			

8.	A cricketer can throw a ball to a maximum horizontal distance of $100 m$. The speed with which he throws the ball is (to the nearest integer)					
	a) $30 \ ms^{-1}$	b) $42 \ ms^{-1}$	c) $32 \ ms^{-1}$	d) $35 \ ms^{-1}$		
9.	The maximum height attained by a projectile when thrown at an angle θ with the horizontal is found to be half the horizontal range. Then θ is equal to					
	a) $tan^{-2}(2)$	b) $\frac{\pi}{6}$	c) $\frac{\pi}{4}$	d) $\tan^{-1}\left(\frac{1}{2}\right)$		
10.	The angular velocity of a wheel is $70 rad/sec$. If the radius of the wheel is $0.5 m$, then linear velocity of the wheel is					
	a) 70 <i>m/s</i>	b) 35 <i>m/s</i>	c) 30 <i>m/s</i>	d) 20 <i>m/s</i>		
11.	A particle undergoes uniform circular motion. A the angular momentum of the particle remain (a) center of the circle c) inside the circle		About which point on the plane of the circle, will conserved? b) on the circumference of the circle d) outside the circle			
	c) mside the chicle		ajoutside the circle			
12.	An aeroplane is flying horizontally with a velocity of 216 kmh ^{-1} and at a height of 1960 m. When it is vertically above a point <i>A</i> on the ground, a bomb is released from it. The bomb strikes the ground at point <i>B</i> . The distance <i>AB</i> is (ignoring air resistance)					
	a) 1200 m	b) 0.33 km	c) 3.33 km	d) 33 km		
13.	If the magnitude of the then the angle between	e of their magnitudes,				
	a) 0°	b) 4 <mark>5°</mark>	c) 90°	d) 180°		
14.	Which of the following sets of factors will affect the horizontal distance covered by an athlete in a long-jump event					
	a) Speed before he jum	ps and his weight	b) The direction in which he leaps and the initial speed			
	c) The force with which he pushes the ground d) None of these and his speed					
15.	A point of application of a force $\vec{F} = 5\hat{i} - 4\hat{j} + 2\hat{k}$ is moved from $\vec{r_1} = 2\hat{i} + 7\hat{j} + 4\hat{k}$ to $\vec{r_2} = 5\hat{i} + 2\hat{j} + 3\hat{k}$ the work done is					
	a) 22 units	b) -22 units	c) 33 units	d) - 33 units		
16.	f a particle of mass m is moving in a horizontal circle of radius r with a centripetal force $(-K/r^2)$ the total energy is					
	a) $-\frac{K}{2r}$	b) $-\frac{K}{r}$	c) $-\frac{2K}{r}$	$d) = \frac{4K}{r}$		

- 17. The x and y components of a force are 2 N and -3N. The force is
 - a) $2\hat{i} 3\hat{j}$
- b) $2\hat{i} + 3\hat{j}$
- c) $-2\hat{i} 3\hat{j}$
- d) $3\hat{i} + 2\hat{j}$
- 18. As per given future to complete the circular loop what should be the radius if initial height is 5 m

a) 4 m

b) 3 m

- c) 2.5 m
- d) 2 m
- 19. A particle is projected from the ground at an angle of 60° with horizontal with speed u = 20 m s⁻¹. The radius of curvature of the path of the particle, when its velocity makes an angle of 30° with horizontal is (g = 10 ms^{-2})
 - a) 10.6 m
- b) 12.8 m
- c) 15.4 m
- d) 24.2 m
- 20. A body of mass 1 kg thrown with a velocity of 10 ms^{-1} at an angle of 60° with the horizontal. Its momentum at the highest point is
 - a) 2 kg ms^{-1}
- b) 3 kg ms^{-1}
- c) 4 kg ms^{-1}
- d) 5 kg ms^{-1}