

CLASS: XITH DATE: **SUBJECT: PHYSICS**

DPP NO. : 2

Topic:-MOTION IN A PLANE

1.	The angle of projection at which the horizontal range and maximum height of projectile are
	equal is

b)
$$\theta = \tan^{-1}(0.25)$$

c)
$$\theta = \tan^{-1} 4$$
 or $(\theta = 76^{\circ})$

a)
$$h = \frac{5}{2}D$$

b)
$$h = \frac{3}{2}D$$

c)
$$h = \frac{5}{4}D$$

$$d) h = 2D$$

3. A force
$$\vec{F} = 2\hat{i} + 2\hat{j}$$
 N displaces a particle through $\vec{S} = 2\hat{i} + 2\hat{k}$ m in 16 s. The power developed by \vec{F} is

a)
$$0.25 \text{ J s}^{-1}$$

b)
$$25 \, \mathrm{I \, s^{-1}}$$

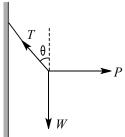
c)
$$225 \text{ J s}^{-1}$$

d)
$$450 \text{ J s}^{-1}$$

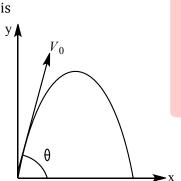
4. A sphere of mass
$$m$$
 is tied to end of a string of length l and rotated through the other end along a horizontal circular path with speed v . The work done in full horizontal circle is

b)
$$\left(\frac{mv^2}{l}\right) . 2\pi l$$

$$d$$
) $\left(\frac{mv^2}{l}\right)$. (l)


5. Two projectile are thrown with the same initial velocity at angles
$$\alpha$$
 and $(90^{\circ} - \alpha)$ with the horizontal. The maximum heights attained by them are h_1 and h_2 respectively. Then $\frac{h_1}{h_2}$ is equal

- a) $\sin^2 \alpha$
- b) $\cos^2 \alpha$
- c) $tan^2 \alpha$
- d) 1


6. A particle
$$P$$
 is at the origin starts with velocity $\vec{\mathbf{v}} = (2\hat{\mathbf{i}} - 4\hat{\mathbf{j}})\text{ms}^{-1}$ with constant acceleration $(3\hat{\mathbf{i}} - 5\hat{\mathbf{j}})\text{ms}^{-2}$. After travelling for 2 s, its distance from the origin is

- a) 10 m
- b) 10.2 m
- c) 9.8 m
- d) 11.7 m

7. A small sphere is hung by a string fixed to a wall. The sphere is pushed away from the wall by a stick. The force acting on the sphere are shown in figure. Which of the following statements is wrong?

- a) $P = W tan \theta$
- b) $\vec{T} + \vec{P} + \vec{W} = 0$ c) $T^2 = P^2 + W^2$ d) T = P + W
- A particle moves in a circle of radius 30cm. Its liner speed is given by v = 2t, where t is in second and v in ms⁻¹. Find out its, radial and tangential acceleration at t = 3s, respectively, a) 220 ms^{-2} , 50 ms^{-2} b) 100 ms^{-2} , 5 ms^{-2} c) 120 ms^{-2} , 2 ms^{-2} d) 110 ms^{-2} , 10 ms^{-2}
- A small particle of mass m is projected at an angle θ with the x-axis with an initial velocity v_0 in the x-y plane as shown in the figure. At a time $t < \frac{v_0 \sin \theta}{g}$, the angular momentum of the particle

- a) $-mgv_0t^2\cos\theta$ i

- b) $mgv_0t\cos\theta \hat{\mathbf{k}}$ c) $-\frac{1}{2}mgv_0t^2\cos\theta \hat{\mathbf{k}}$ d) $\frac{1}{2}mgv_0t^2\cos\theta \hat{\mathbf{i}}$
- 10. A body is thrown upward from the earth surface with velocity 5 m/s and from a planet surface with velocity 3 m/s. Both follow the same path. What is the projectile acceleration due to gravity on the planet
 - a) $2 m/s^2$
- b) $3.5 \, m/s^2$
- c) $4 m/s^2$
- d) 5 m/s^2
- 11. An unbanked curve has a radius of 60 m. The maximum speed at which the car make a turn is (Take $\mu = 0.75$)
 - a) 7 ms^{-1}
- b) 14 ms^{-1}
- c) 21 ms^{-1}
- d) 2.1 ms^{-1}

12.	A fly wheel rotates about a fixed axis and slows down from 300 rpm to 100 rpm in 2 min. The its angular retardation in rad/min is				
	a) $\frac{100}{\pi}$	b) 100	c) 100 π	d) 200 π	
13.	explodes into three pair ms^{-1} , the second partic	rticles of equal masses. C cle goes vertically down	at an angle of 60°. At the highest point, it one goes vertically upwards with a velocity 100 wards. What is the velocity of third particle? b) 200 ms ⁻¹ making 60° angle with horizontal d) 200 ms ⁻¹		
14.	A car is moving on a circular path and takes a turn. If R_1 and R_2 be the reactions on the inner and outer wheels respectively, then				
	a) $R_1 = R_2$	_	c) $R_1 > R_2$	d) $R_1 \ge R_2$	
15.	If the vector $\vec{A} = 2\hat{i} + 4\hat{j}$ a) $5\sqrt{5}$	j and $\vec{B} = 5\hat{i} + p\hat{j}$ are par b) 1 <mark>0</mark>	c) 15	nagnitude of \vec{B} is d) $2\sqrt{5}$	
16.	A body is revolving wit a) $\frac{v}{r}$	ch a uniform speed v in a b) $\frac{v^2}{r}$	a circle of radius r . The t $$ c) Zero	angential acceleration is d) $\dfrac{v}{r^2}$	
17.	_	ridge <mark>with</mark> out leaving th igibly small)	_	need with which a motor of point is $(g = 10 \text{ms}^{-2})$ d) 15 ms ⁻¹	
18.	A car is moving with hi a) Centripetal force	gh velocity when it has a b) Centrifugal force	a turn. A force acts on it c) Gravitational force		
19.	If time of flight of a projectile is 10 seconds. Range is 500 <i>meters</i> . The maximum height attained by it will be				
	a) 125 m	b) 50 m	c) 100 m	d) 150 m	
20.		th a velocity $20\sqrt{2}$ ms ⁻¹ ago its motion from starting b) $10\sqrt{5}$ ms ⁻¹	_		