CLASS : XITh
Solutions
SUBJECT : PHYSICS
DPP NO. : 1

Topic :- MOTION IN A PLANE

1
(d)

Given, $x=0.20 \mathrm{~m}, y=0.20 \mathrm{~m}, u=1.8 \mathrm{~ms}^{-1}$
Let the ball strike the nth step of stairs,
Vertical distance travelled
$=n y=n \times 0.20=\frac{1}{2} g t^{2}$
Horizontal distance travelled, $n x=u t$
or $t=\frac{n x}{u}$
$\therefore n y=\frac{1}{2} g \times \frac{n^{2} x^{2}}{u^{2}}$
or $n=\frac{2 u^{2}}{g} \frac{y}{x^{2}}=\frac{2 \times(1.8)^{2} \times 0.20}{9.8 \times(0.20)^{2}}$
$=3.3=4$
2

4

6
(d)

Work done in circular motion is always zero
(a) string at this point is maximum
(a)
$\frac{T_{\text {max }}}{T_{\text {min }}}=\frac{\frac{m \nu^{2}}{L}+m \mathrm{~g}}{\frac{m v^{2}}{L}-m \mathrm{~g}}=2$
Simplifying Eq. (i), we get,
$v_{H}=\sqrt{3 \mathrm{~g} L}=\sqrt{\frac{3 \times 10 \times 10}{3}}=10 \mathrm{~ms}^{-1}$
(a)

The cord is most likely to break at the orientation, when mass is at B as tension in the

Here, $\overrightarrow{\mathrm{v}_{1}}=30 \mathrm{~km} \mathrm{~h}^{-1}$ due north $=\overrightarrow{\mathrm{OA}}$
$\overrightarrow{\mathrm{v}_{2}}=40 \mathrm{kmh}^{-1}$ due east $=\overrightarrow{\mathrm{OB}}$
Change in velocity in 20 s

$$
\begin{aligned}
& \Delta \overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}_{2}}-\overrightarrow{\mathrm{v}_{1}}=\overrightarrow{\mathrm{v}_{2}}+\left(\overrightarrow{\mathrm{v}_{1}}\right) \\
& =\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OD}} \\
& |\Delta \overrightarrow{\mathrm{v}}|=\sqrt{v_{2}^{2}+v_{1}^{2}}=\sqrt{40^{2}+30^{2}} \\
& =50 \mathrm{kmh}^{-1} \\
& \text { Acceleration }, \overrightarrow{\mathrm{a}}=\frac{|\Delta \overrightarrow{\mathrm{v}}|}{\Delta^{t}} \\
& =\frac{50}{20}=2.5 \mathrm{kmh}^{-2} \\
& \text { Tan } \beta=\frac{v_{1}}{v_{2}}=\frac{30}{40} \\
& =0.75=\tan 37^{\circ} \\
& \therefore \beta=37^{\circ} \text { north of east }
\end{aligned}
$$

(b)

Maximum horizontal range $=80 \mathrm{~m}$
$\because \theta=45^{\circ} \mathrm{m}$
$\therefore \frac{u^{2}}{g}=80 \mathrm{~m}$

Maximum height, $\mathrm{h}=\frac{u^{2} \sin ^{2} \theta}{2 g}$
$=\frac{80}{2}\left(\sin ^{2} 45^{\circ}\right)=20 \mathrm{~m}$
(c)

If v is velocity of the bob on reaching the lowest point, then $\frac{1}{2} m v^{2}=m g L$
To void breaking, strength of the string
$T_{L}=\frac{m v^{2}}{L}+m \mathrm{~g}=\frac{2 m \mathrm{~g} L}{L}+m \mathrm{~g}=3 m \mathrm{~g}$
(c)

When a force of constant magnitude acts on velocity of particle perpendicularly, then there is no change in the kinetic energy of particle.
Hence, kinetic energy remains constant.
(c)

Due to constant velocity along horizontal and vertical downward force of gravity stone will hit the ground following parabolic path
(d)
$\theta=\tan ^{-1}\left(\frac{v^{2}}{r g}\right)=\tan ^{-1}\left[\frac{(14 \sqrt{3})^{2}}{20 \sqrt{3} \times 9.8}\right]=\tan ^{-1}[\sqrt{3}]=60^{\circ}$
(b)

The two angles of projection are clearly θ and $\left(90^{\circ}-\theta\right)$
$T_{1}=\frac{2 v \sin \theta}{\mathrm{~g}}$ and $T_{2}=\frac{2 v \sin \left(90^{\circ}-\theta\right)}{\mathrm{g}}$
$T_{1} T_{2}=\frac{2(v)^{2}(2 \sin \theta \cos \theta)}{\mathrm{g} \times \mathrm{g}}=\frac{2 R}{\mathrm{~g}}$

19

20
(a)

Minimum tension $T_{1}=\frac{m v^{2}}{r}-m g$
Maximum tension $T_{2}=\frac{m v^{2}}{r}+m g$
Let $\frac{m v^{2}}{r}=x$
So, $T_{1}=x-m g \ldots$ (i)
$T_{2}=x+m g \ldots$ (ii)
Diving Eq. (i) by Eq. (ii)
$\frac{T_{1}}{T_{2}}=\frac{x-m g}{x+m g} \quad\left(\because\right.$ Given $\left.\frac{T_{1}}{T_{2}}=\frac{3}{5}\right)$
$\therefore \frac{3}{5}=\frac{x-m g}{x+m g}$
or $3 x+3 m g=5 x-5 m g$
or $x=4 \mathrm{mg}$
ie, $\frac{m v^{2}}{r}=4 m g$
$\therefore \quad v^{2}=4 r g$
or $\quad v=\sqrt{4 r g}$
or $v=\sqrt{4 \times 2.5 \times 9.8}$
$v=\sqrt{98} \mathrm{~ms}^{-1}$
(d)

Let $\alpha^{\prime \prime}$ be the angle of projection of the second body

$R=\frac{u^{2}}{g \cos \beta}[\sin (2 \alpha-\beta)]$
Range of both the bodies is same. Therefore,
$\sin (2 \alpha-\beta)=\sin \left(2 \alpha^{\prime \prime}-\beta\right)$
or $2 \alpha^{\prime \prime}-\beta=\pi-(2 \alpha-\beta)$
$\alpha^{\prime \prime}=\frac{\pi}{2}-(\alpha-\beta)$
Now, $T=\frac{2 u \sin (\alpha-\beta)}{\mathrm{g} \cos \beta}$ and $T^{\prime \prime}=\frac{2 u \sin \left(\alpha^{\prime \prime}-\beta\right)}{\mathrm{g} \cos \beta}$
$\therefore \frac{T}{T^{\prime \prime}}=\frac{\sin (\alpha-\beta)}{\sin \left(\alpha^{\prime \prime}-\beta\right)}=\frac{\sin (\alpha-\beta)}{\sin \left\{\frac{\pi}{2}-(\alpha-\beta)-\beta\right\}}$

$$
=\frac{\sin (\alpha-\beta)}{\sin \left(\frac{\pi}{2}-\alpha\right)}=\frac{\sin (\alpha-\beta)}{\cos \alpha}
$$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	D	D	A	A	A	B	C	A	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	D	B	B	D	B	C	D	A	D		

