

$$\Delta \vec{v} = \vec{v_2} \cdot \vec{v_1} = \vec{v_2} + (-\vec{v_1})$$

$$= \vec{OB} + \vec{OC} = \vec{OD}$$

$$|\Delta \vec{v}| = \sqrt{v_2^2 + v_1^2} = \sqrt{40^2 + 30^2}$$

$$= 50 \text{ kmh}^{-1}$$
Acceleration, $\vec{a} = \frac{|\Delta \vec{v}|}{\Delta t}$

$$= \frac{50}{20} = 2.5 \text{ kmh}^{-2}$$
Tan $\beta = \frac{v_1}{v_2} = \frac{30}{40}$

$$= 0.75 = \tan 37^\circ$$

$$\therefore \beta = 37^\circ \text{ north of east}$$

$$W = \vec{v_1} = \frac{3}{40}$$

$$W = \vec{v_2} = \vec{v_2}$$

$$(b)$$
Maximum horizontal range = 80 m

$$\therefore \theta = 45^\circ \text{ m}$$

$$\therefore \frac{u^2}{g} = 80 \text{ m}$$
Maximum height, $h = \frac{u^2 \sin^2 \theta}{2g}$

$$= \frac{80}{2} (\sin^2 45^\circ) = 20 \text{ m}$$
(c)
If v is velocity of the bob on reaching the lowest point, then $\frac{1}{2}mv^2 = mgL$
To void breaking, strength of the string

$$T_L = \frac{mv^2}{L} + mg = \frac{2mgL}{L} + mg = 3 mg$$

$$T_L = \frac{m\nu}{L} + mg =$$
(c)

10

8

7

When a force of constant magnitude acts on velocity of particle perpendicularly, then there is no change in the kinetic energy of particle.

Hence, kinetic energy remains constant.

11 (c)

Due to constant velocity along horizontal and vertical downward force of gravity stone will hit the ground following parabolic path

12 (d)

$$\theta = \tan^{-1}\left(\frac{v^2}{rg}\right) = \tan^{-1}\left[\frac{(14\sqrt{3})^2}{20\sqrt{3} \times 9.8}\right] = \tan^{-1}[\sqrt{3}] = 60^{\circ}$$

(b)

13

The two angles of projection are clearly θ and $(90^\circ - \theta)$

$$T_{1} = \frac{2\nu\sin\theta}{g} \text{ and } T_{2} = \frac{2\nu\sin(90^{\circ} - \theta)}{g}$$
$$T_{1}T_{2} = \frac{2(\nu)^{2}(2\sin\theta\cos\theta)}{g \times g} = \frac{2R}{g}$$
(b)

14

Computing the given equation with

$$y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$$
, we get
 $\tan \theta = \sqrt{3}$

15

(d)

(b)

(c)

Angle made by the cyclist with vertical is given by

$$\tan \theta = \frac{v^2}{\mathrm{rg}}$$

$$\therefore \ \theta = \tan^{-1} \left(\frac{10 \times 10}{80 \times 10} \right) \left(\div v = 36 \times \frac{5}{18} = 10 \mathrm{\ ms}^{-1} \right)$$
$$= \tan^{-1} \left(\frac{1}{8} \right)$$

16

Let *x* be increase in length of the spring. The particle would move in a circular path of radius (l + x). Centripetal force = force due to the spring $m(l + x)\omega^2 = kx$

$$\therefore x = \frac{m\omega^2 l}{k \cdot m\omega^2}$$

17

$$\mathbf{h} = \frac{u^2}{2g} \Longrightarrow u^2 = 2g\mathbf{h}$$

Maximum horizontal distance

$$R_{\max} = \frac{u^2}{g}$$

$$u \qquad h$$

$$R_{\max} = 2h$$
(d)
$$\sqrt{g} \qquad 9.8 \qquad 7 \qquad 100$$

18

$$\omega = \sqrt{\frac{g}{r}} = \sqrt{\frac{9.8}{0.2}} = 7rad/s$$

19

(a)

Minimum tension $T_1 = \frac{mv^2}{r} \cdot mg$ Maximum tension $T_2 = \frac{mv^2}{r} + mg$ Let $\frac{mv^2}{r} = x$ So, $T_1 = x \cdot mg \dots (i)$ $T_2 = x + mg \dots (ii)$ Diving Eq. (i) by Eq. (ii) $\frac{T_1}{T_2} = \frac{x \cdot mg}{x + mg}$ (\because Given $\frac{T_1}{T_2} = \frac{3}{5}$) $\therefore \frac{3}{5} = \frac{x \cdot mg}{x + mg}$ or $3x + 3mg = 5x \cdot 5mg$ or x = 4 mgie, $\frac{mv^2}{r} = 4mg$ $\therefore v^2 = 4 rg$ or $v = \sqrt{4rg}$ or $v = \sqrt{4 \times 2.5 \times 9.8}$ $v = \sqrt{98} \text{ ms}^{-1}$

(d)

Let α'' be the angle of projection of the second body

$$u$$

 α β
 u^2 $(u - 0)$

$$R = \frac{u}{g\cos\beta} \left[\sin\left(2\alpha - \beta\right)\right]$$

Range of both the bodies is same. Therefore,

$$\sin(2\alpha - \beta) = \sin(2\alpha'' \cdot \beta)$$

or $2\alpha'' \cdot \beta = \pi - (2\alpha - \beta)$
 $\alpha'' = \frac{\pi}{2} \cdot (\alpha - \beta)$
Now, $T = \frac{2u\sin(\alpha - \beta)}{g\cos\beta}$ and $T'' = \frac{2u\sin(\alpha'' \cdot \beta)}{g\cos\beta}$
 $\therefore \frac{T}{T''} = \frac{\sin(\alpha - \beta)}{\sin(\alpha'' - \beta)} = \frac{\sin(\alpha - \beta)}{\sin\left\{\frac{\pi}{2} \cdot (\alpha - \beta) - \beta\right\}}$

$$=\frac{\sin(\alpha - \beta)}{\sin\left(\frac{\pi}{2} - \alpha\right)} = \frac{\sin(\alpha - \beta)}{\cos \alpha}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
А.	D	D	D	А	А	A	В	С	А	С
Q.	11	12	13	14	15	16	17	18	19	20
А.	С	D	В	В	D	В	С	D	А	D

