CLASS : XITh
SUBJECT : PHYSICS
DATE:
DPP NO. : 9

## Topic :-MOTION IN A STRAIGHT LINE

1. A body starts from rest. What is the ratio of the distance travelled by the body during the 4th and 3 rd second
a) $\frac{7}{5}$
b) $\frac{5}{7}$
c) $\frac{7}{3}$
d) $\frac{3}{7}$
2. A boat crosses a river from port $A$ to port $B$, which are just on the opposite side. The speed of the water is $V_{W}$ and that of boat is $V_{B}$ relative to still water. Assume $V_{B}=2 V_{W}$. What is the time taken by the boat, if It has to cross the river directly on the $A B$ line
a) $\frac{2 D}{V_{B} \sqrt{3}}$
b) $\frac{\sqrt{3} D}{2 V_{B}}$
c) $\frac{D}{V_{B} \sqrt{2}}$
d) $\frac{D \sqrt{2}}{V_{B}}$
3. Two cars $A$ and $B$ are travelling in the same direction with velocities $v_{1}$ and $v_{2}\left(v_{1}>v_{2}\right)$. When the car $A$ is at a distance $d$ behind the car $B$, the driver of the car $A$ applies the brake producing uniform retardation, $a$. There will be no collision when
a) $d<\left(\frac{v_{1}-v_{2}}{2 a}\right)$
b) $d>\frac{v_{1}^{2}-v_{2}^{2}}{2 a}$
c) $d>\frac{\left(v_{1}-v_{2}\right)^{2}}{2 a}$
d) $d<\frac{v_{1}^{2}-v_{2}^{2}}{2 a}$
4. A bird flies for $4 s$ with a velocity of $|t-2| m / s$ in a straight line, where $t$ is time in seconds. It covers a distance of
a) 2 m
b) $4 m$
c) $6 m$
d) 8 m
5. If a body loses half of its velocity on penetrating 3 cm in a wooden block, then how much will it penetrate more before coming to rest?
a) 1 cm
b) 2 cm
c) 3 cm
d) 4 cm
6. A body, thrown upwards with some velocity, reaches the maximum height of 20 m . Another body with double the mass thrown up, with double initial velocity will reach a maximum height of
a) 200 m
b) 16 m
c) 80 m
d) 40 m
7. A bullet comes out of the barrel of gun of length 2 m with a speed $80 \mathrm{~ms}^{-1}$. The average acceleration of the bullet is
a) $1.6 \mathrm{~ms}^{-2}$
b) $160 \mathrm{~ms}^{-2}$
c) $1600 \mathrm{~ms}^{-2}$
d) $16 \mathrm{~ms}^{-2}$
8. The position of a particle moving along $x$-axis at certain times is given below:

| $t(s)$ | 0 | 1 | 2 | 3 |
| :---: | :--- | :--- | :--- | :--- |
| $x(m)$ | -2 | 0 | 6 | 16 |

Which of the following describes the motion correctly
a) Uniform accelerated
b) Uniform decelerated
c) Non-uniform accelerated
d) There is not enough data for generalization
9. Which of the following options is correct for the object having a straight line motion represented by the following graph?



The object moves with constantly increasing velocity from $O$ to $A$ and then it moves with
a) constant velocity.
b) Velocity of the object increases uniformly
c) Average velocity is zero
d) The graph shown is impossible
10. A body dropped from top of a tower fall through 60 m during the last two second of its fall. The height of tower is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
a) 95 m
b) 60 m
c) 80 m
d) 90 m
11. A stone is allowed to fall from the top of a tower 100 m high and at the same time another stone is projected vertically upwards from the ground with a velocity of $254 \mathrm{~ms}^{-1}$. The two stones will meet after
a) 4 s
b) 0.4 s
c) 0.04 s
d) 40 s
12. Speed of two identical cars $u$ and $4 u$ at a specific instant. The ratio of the respective distances in which the two cars are stopped from that instant is
a) $1: 1$
b) $1: 4$
c) $1: 8$
d) $1: 16$
13. Which of the following speed-time graphs exist in the nature?
a)

b)

c)

d) All of the above
14. The motion of a particle along a straight line is described by equation :
$x=8+12 t-t^{3}$
Where $x$ is in metre and $t$ in second. The retardation of the particle when its velocity becomes zero, is
a) $24 \mathrm{~ms}^{-2}$
b) Zero
c) $6 \mathrm{~ms}^{-2}$
d) $12 \mathrm{~ms}^{-2}$
15. If a train travelling at 72 kmph is to be brought to rest in a distance of 200 metres, then its retardation should be
a) $20 \mathrm{~ms}^{-2}$
b) $10 \mathrm{~ms}^{-2}$
c) $2 \mathrm{~ms}^{-2}$
d) $1 \mathrm{~ms}^{-2}$
16. From a high tower at time $t=0$, one stone is dropped from rest and simultaneously another stone is projected vertically up with an initial velocity. The graph of the distance $S$ between the two stones, before either his the ground, plotted against time $t$ will be as
a)

b)

c)

d)

17. Rain drops fall vertically at a speed of $20 \mathrm{~ms}^{-1}$. At what angle do they fall on the wind screen of a car moving with a velocity of $15 \mathrm{~ms}^{-1}$, if the wind screen velocity inclined at an angle of $23^{\circ}$ to the vertical?
$\left(\cot ^{-1}\left[\frac{4}{3}\right] \approx 36^{\circ}\right)$
a) $60^{\circ}$
b) $30^{\circ}$
c) $45^{\circ}$
d) $90^{\circ}$
18. Two trains travelling on the same track are approaching each other with equal speeds of 40 m $\mathrm{s}^{-1}$. The drivers of the trains begin to decelerate simultaneously when they are just 2 km apart. If the decelerations are both uniform and equal, then the value of deceleration to barely avoid collision should be
a) $0.8 \mathrm{~ms}^{-2}$
b) $2.1 \mathrm{~ms}^{-2}$
c) $11.0 \mathrm{~ms}^{-2}$
d) $13.2 \mathrm{~ms}^{-2}$
19. A ball of mass $m_{1}$ and another ball of mass $m_{2}$ are dropped from equal height. If time taken by the balls are $t_{1}$ and $t_{2}$ respectively, then
a) $t_{1}=\frac{t_{2}}{2}$
b) $t_{1}=t_{2}$
c) $t_{1}=4 t_{2}$
d) $t_{1}=\frac{t_{2}}{4}$
20. A particle moves along a straight line $O X$. At a time $t$ (in seconds) the distance $x$ (in metres) of the particle from $O$ is given by $x=40+12 t-t^{3}$
How long would the particle travel before coming to rest
a) 24 m
b) 40 m
c) 56 m
d) 16 m


