

CLASS : XITH DATE :

SUBJECT : PHYSICS DPP NO. : 9

Topic :-MOTION IN A STRAIGHT LINE

1. A body starts from rest. What is the ratio of the distance travelled by the body during the 4th and 3rd second

a)
$$\frac{7}{5}$$
 b) $\frac{5}{7}$ c) $\frac{7}{3}$ d) $\frac{3}{7}$

2. A boat crosses a river from port *A* to port *B*, which are just on the opposite side. The speed of the water is V_W and that of boat is V_B relative to still water. Assume $V_B = 2V_W$. What is the time taken by the boat, if It has to cross the river directly on the *AB* line

a)
$$\frac{2D}{V_B\sqrt{3}}$$
 b) $\frac{\sqrt{3}D}{2V_B}$ c) $\frac{D}{V_B\sqrt{2}}$ d) $\frac{D\sqrt{2}}{V_B}$

3. Two cars *A* and *B* are travelling in the same direction with velocities v_1 and $v_2(v_1 > v_2)$. When the car *A* is at a distance *d* behind the car *B*, the driver of the car *A* applies the brake producing uniform retardation, *a*. There will be no collision when

a)
$$d < \left(\frac{v_1 \cdot v_2}{2a}\right)$$
 b) $d > \frac{v_1^2 \cdot v_2^2}{2a}$ c) $d > \frac{(v_1 \cdot v_2)^2}{2a}$ d) $d < \frac{v_1^2 \cdot v_2^2}{2a}$

- 4. A bird flies for 4 *s* with a velocity of |*t* 2|*m*/*s* in a straight line, where *t* is time in seconds. It covers a distance of
 a) 2 *m*b) 4 *m*c) 6 *m*d) 8 *m*
- 5. If a body loses half of its velocity on penetrating 3 cm in a wooden block, then how much will it penetrate more before coming to rest?
 a) 1 cm
 b) 2 cm
 c) 3 cm
 d) 4 cm
- 6. A body, thrown upwards with some velocity, reaches the maximum height of 20*m*. Another body with double the mass thrown up, with double initial velocity will reach a maximum height of
 - a) 200 m b) 16 m c) 80 m d) 40 m

7. A bullet comes out of the barrel of gun of length 2m with a speed 80 ms⁻¹. The average acceleration of the bullet is

a) 1.6 ms^{-2} b) 160 ms^{-2} c) 1600 ms^{-2} d) 16 ms^{-2}

8. The position of a particle moving along x-axis at certain times is given below:

t(s)	0	1	2	3
x(m)	-2	0	6	16

Which of the following describes the motion correctly

a) Uniform accelerated

b) Uniform decelerated

c) Non-uniform accelerated

- d) There is not enough data for generalization
- 9. Which of the following options is correct for the object having a straight line motion represented by the following graph?

- ^a constant velocity.
- b) Velocity of the object increases uniformly
- c) Average velocity is zero
- d) The graph shown is impossible
- 10. A body dropped from top of a tower fall through 60 m during the last two second of its fall. The height of tower is $(g = 10 \text{ ms}^{-2})$ a) 95 m b) 60 m c) 80 m d) 90 m

11. A stone is allowed to fall from the top of a tower 100m high and at the same time another stone is projected vertically upwards from the ground with a velocity of 254ms⁻¹. The two stones will meet after
a) 4 s
b) 0.4 s
c) 0.04 s
d) 40 s

12. Speed of two identical cars *u* and 4*u* at a specific instant. The ratio of the respective distances in which the two cars are stopped from that instant is
a) 1:1
b) 1:4
c) 1:8
d) 1:16

13. Which of the following speed-time graphs exist in the nature?

14. The motion of a particle along a straight line is described by equation :
x = 8 + 12t - t³
Where x is in metre and t in second. The retardation of the particle when its velocity becomes zero, is

a) 24*ms*⁻² b) Zero c) 6*ms*⁻² d) 12*ms*⁻²

- 15. If a train travelling at 72 *kmp*h is to be brought to rest in a distance of 200 metres, then its retardation should be
 - a) $20 ms^{-2}$ b) $10 ms^{-2}$ c) $2 ms^{-2}$ d) $1 ms^{-2}$
- 16. From a high tower at time t = 0, one stone is dropped from rest and simultaneously another stone is projected vertically up with an initial velocity. The graph of the distance *S* between the two stones, before either his the ground, plotted against time *t* will be as

17. Rain drops fall vertically at a speed of 20ms⁻¹. At what angle do they fall on the wind screen of a car moving with a velocity of 15ms⁻¹, if the wind screen velocity inclined at an angle of 23° to the vertical?

$$\left(\cot^{-1}\left[\frac{4}{3}\right] \approx 36^{\circ}\right)$$

a) 60° b) 30° c) 45° d) 90°

18. Two trains travelling on the same track are approaching each other with equal speeds of 40m s⁻¹. The drivers of the trains begin to decelerate simultaneously when they are just 2 km apart. If the decelerations are both uniform and equal, then the value of deceleration to barely avoid collision should be

```
a) 0.8ms<sup>-2</sup> b) 2.1 ms<sup>-2</sup> c) 11.0 ms<sup>-2</sup> d) 13.2 ms<sup>-2</sup>
```

19. A ball of mass m_1 and another ball of mass m_2 are dropped from equal height. If time taken by the balls are t_1 and t_2 respectively, then

a)
$$t_1 = \frac{t_2}{2}$$
 b) $t_1 = t_2$ c) $t_1 = 4t_2$ d) $t_1 = \frac{t_2}{4}$

20. A particle moves along a straight line *OX*. At a time *t* (in seconds) the distance *x* (in metres) of the particle from *O* is given by $x = 40 + 12t - t^3$ How long would the particle travel before coming to rest a) 24 m b) 40 m c) 56 m d) 16 m

