CLASS : XITH
Solutions

Topic:- MOTION IN A STRAIGHT LINE

1
(a)
$S_{n}=u+\frac{a}{2}(2 n-1)=\frac{a}{2}(2 n-1)$ because $u=0$
Hence $\frac{S_{4}}{S_{3}}=\frac{7}{5}$
2
(a)

From figure, $V_{B} \sin \theta=V_{W}$
$\sin \theta=\frac{V_{W}}{V_{B}}=\frac{1}{2} \Rightarrow \theta=30^{\circ} \quad\left[\because V_{B}=2 V_{W}\right]$
Time taken to cross the river,
$t=\frac{D}{V_{B} \cos \theta}=\frac{D}{V_{B} \cos 30^{\circ}}=\frac{2 D}{V_{B} \sqrt{3}}$
3
(c)

For same direction relative velocity $=\left|v_{1}-v_{2}\right|$
Distance covered, $d=\frac{\left(v_{1}-v_{2}\right)^{2}}{2 a}$
For no collision, $d>\frac{\left(v_{1}-v_{2}\right)^{2}}{2 a}$

4
(b)

The velocity time graph for given problem is shown in the figure.

Distance travelled $S=$ Area under curve $=2+2=4 \mathrm{~m}$

From $v^{2}=u^{2}-2 a s$
$\left(\frac{v}{2}\right)^{2}=v^{2}-2 a \times 3$
$a=\frac{v^{2}}{8}$
Let on penetrating 3 cm in a wooden block, the body moves x distance form B to C.
So, for B to C

$$
\begin{aligned}
u & =\frac{v}{2}, v=0, \\
s & =x, a=\frac{v^{2}}{8} \quad \quad \text { (deceleration) } \\
\therefore(0)^{2} & =\left(\frac{v}{2}\right)^{2}-2 \cdot \frac{v^{2}}{8} \cdot x \\
x & =1
\end{aligned}
$$

(c)

Let initial velocity of body at point A is $v, A B$ is 3 cm .

(c)

Mass does not affect maximum height
$H=\frac{u^{2}}{2 g} \Rightarrow H \propto u^{2}$, So if velocity is doubled then height will become four times.i.e. $H=20 \times$ $4=80 \mathrm{~m}$
(c)

Given, $s=2 \mathrm{~m}, u=80 \mathrm{~ms}^{-1}, v=0$
From $\quad v^{2}=u^{2}-2 a s$
$\therefore \quad(0)^{2}=(80)^{2}-2 \times a \times 2$
Or $\quad a=\frac{80 \times 80}{4}=1600 \mathrm{~ms}^{-2}$

8
(c)

Instantaeneous velocity $=v=\frac{\Delta^{x}}{\Delta^{t}}$
By using the data from the table
$v_{1}=\frac{0-(-2)}{1}=2 \mathrm{~m} / \mathrm{s}, \quad v_{2}=\frac{6-0}{1}=6 \mathrm{~m} / \mathrm{s}$
$v_{3}=\frac{16-6}{1}=10 \mathrm{~m} / \mathrm{s}$
So, motion is non-uniform but accelerated
(c)

Let body reaches the ground in t sec.
\therefore Velocity of body after $(t-2)$ sec from equation of motion.
$v=u+\mathrm{g} t^{\prime}$
And $t^{\prime}=t-2$
$\therefore v=\mathrm{g}(t-2)$
Distance covered in last two sec
$h^{\prime}=g(t-2) \times 2+\frac{1}{2} g(2)^{2}$
$60=20(t-2)+20$
Or $t=4 \mathrm{~s}$
Hence, height of tower is given buy
$\mathrm{h}=u t+\frac{1}{2} \mathrm{~g} t^{2}$
$\mathrm{h}=\frac{1}{2} \mathrm{~g} t^{2}[\therefore u=0]$

$$
=\frac{1}{2} \times 10 \times(4)^{2}=80 \mathrm{~m}
$$

(a)
$x=\frac{1}{2} \mathrm{~g} t^{2}, 100-x=25 x-\frac{1}{2} \mathrm{~g} t^{2}$;
Adding $25 t=100$ or $t=4 \mathrm{~s}$
(d)
$S \propto u^{2} \Rightarrow \frac{S_{1}}{S_{2}}=\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$
(b)

Speed can never be negative. Hence (b) is correct.
(d)
$x=8+12 t+t^{3}$
$v=0+12-3 t^{2}=0$
$3 t^{2}=12$
$t=2 \mathrm{sec}$
$a=\frac{d v}{d t}=0-6 t$
$a[t=2]=-12 \mathrm{~m} / \mathrm{s}^{2}$
Retardation $=12 \mathrm{~m} / \mathrm{s}^{2}$
(d)
$u=72 \mathrm{kmph}=20 \mathrm{~m} / \mathrm{s}, v=0$
By using $v^{2}=u^{2}-2 a s \Rightarrow a=\frac{u^{2}}{2 s}=\frac{(20)^{2}}{2 \times 200}=1 \mathrm{~m} / \mathrm{s}^{2}$
(a)
$S_{1}=\frac{1}{2} f t^{2}, S_{2}=-v_{0} t-\frac{1}{2} \mathrm{~g} t^{2}$, Clearly, $\left(S_{1}-S_{2}\right) \propto t$
(a)
$\tan \left(90^{\circ}-\theta\right)=\frac{20}{15}$
$\therefore \cot \theta=\frac{20}{15}=\frac{4}{3}$
$\Rightarrow \theta=37^{\circ}$
$\therefore \theta=37^{\circ}+23^{\circ}$
$=60^{\circ}$
(a)

Let us calculate relative deceleration by considering relative velocity
Using, $v^{2}-u^{2}=2 a S, 0^{2}-80^{2}=2 \times a \times 2000$
or $a=-\frac{80 \times 80}{4000}=-\frac{64}{40} \mathrm{~ms}^{-2}=-1.6 \mathrm{~ms}^{-2}$
Deceleration of each train is $\frac{1.6}{2} \mathrm{~ms}^{-2} i e, 0.8 \mathrm{~ms}^{-2}$
(b)

The time of fall is independent of the mass
(c)

Distance travelled by the particle is
$x=40+12 t-t^{3}$
We know that, speed is rate of change of distance i.e.
$v=\frac{d x}{d t}$
$\therefore v=\frac{d}{d t}\left(40+12 t-t^{3}\right)=0+12-3 t^{2}$
But final velocity $v=0$
$\therefore 12-3 t^{2}=0$
$\Rightarrow t^{2}=\frac{12}{3}=4 \Rightarrow t=2 s$
Hence, distance travelled by the particle before coming to rest is given by $x=40+12(2)-(2)^{3}=40+24-8=64-8=56 m$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	A	C	B	C	C	C	C	C	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	D	B	D	D	A	A	A	B	C			

