CLASS : XITH
SUBJECT : PHYSICS
DATE:
DPP NO. : 8

Topic :-MOTION IN A STRAIGHT LINE

1. The distance travelled by an object along a straight line in time t is given by $s=3-4 t+5 t^{2}$, the initial velocity of the object is
a) 3 unit
b) -3 unit
c) 4 unit
d) -4 unit
2. The displacement-time graph of moving particle is shown below

The instantaneous velocity of the particle is negative at the point
a) D
b) F
c) C
d) E
3. Spotting a police car, you brake a parsche from a speed of $100 \mathrm{kmh}^{-1}$ to a speed of $80.0 \mathrm{kmh}^{-1}$ during a displacement of 88.0 m , at a constant acceleration. What is the acceleration?
a) $-2.5 \mathrm{~ms}^{-2}$
b) $1.58 \mathrm{~ms}^{-2}$
c) $-1.58 \mathrm{~ms}^{-2}$
d) $2.5 \mathrm{~ms}^{-2}$
4. An aircraft is flying at a height of 34000 m above the ground. If the angle subtended at a ground observation point by the aircraft positions 10 s apart is 30°, then the speed of the aircraft is
a) $19.63 \mathrm{~ms}^{-1}$
b) $1963 \mathrm{~ms}^{-1}$
c) $108 \mathrm{~ms}^{-1}$
d) $196.3 \mathrm{~ms}^{-1}$
5. A particle is projected up with an initial velocity of $80 \mathrm{ft} / \mathrm{sec}$. The ball will be at a height of 96 $f t$ from the ground after
a) 2.0 and 3.0 sec
b) Only at 3.0 sec
c) Only at 2.0 sec
d) After 1 and 2 sec
6. A ball A is thrown up vertically with speed u and at the same instant another ball B is released from a height h. At time t, the speed of A relative to B is
a) u
b) $2 u$
c) $u-g t$
d) $\sqrt{\left(u^{2}-g t\right)}$
7. A body is moving in a straight line a shown in velocity-time graph. The displacement and distance travelled by in 8 s are respectively

a) $12 \mathrm{~m}, 20 \mathrm{~m}$
b) $20 \mathrm{~m}, 12 \mathrm{~m}$
c) $12 \mathrm{~m}, 12 \mathrm{~m}$
d) $20 \mathrm{~m}, 20 \mathrm{~m}$
8. The velocity-time and acceleration-time graphs of a particle are given as

Its position-time graph may be given as
a)

b)

c)

d)

9. A stone thrown upward with a speed u from the top of the tower reaches the ground with a velocity $3 u$. The height of the tower is
a) $3 u^{2} / g$
b) $4 u^{2} / g$
c) $6 u^{2} / g$
d) $9 u^{2} / g$
10. A particle is projected with velocity v_{0} along x-axis.The deceleration on the particle is proportional to the square of the distance from the origin i.e., $a=-a x^{2}$.The distance at which the particle stops is
a) $\sqrt{\frac{3 v_{0}}{2 \alpha}}$
b) $\left(\frac{3 v_{0}}{2 \alpha}\right)^{\frac{1}{3}}$
c) $\sqrt{\frac{3 v_{0}^{2}}{2 \alpha}}$
d) $\left(\frac{3 v_{0}^{2}}{2 \alpha}\right)^{\frac{1}{3}}$
11. A ball is thrown vertically upwards with a velocity of $25 \mathrm{~ms}^{-1}$ from the top of a tower of height 30 m . How long will it travel before it hits ground?
a) 6 s
b) 5 s
c) 4 s
d) 12 s
12. The motion of a particle along a straight line is described by equation :
$x=8+12 t-t^{3}$
Where x is in metre and t in second. The retardation of the particle when its velocity becomes zero, is
a) $24 \mathrm{~ms}^{-2}$
b) Zero
c) $6 \mathrm{~ms}^{-2}$
d) $12 \mathrm{~ms}^{-2}$
13. A particle starting from rest falls from a certain height. Assuming that the value of acceleration due to gravity remains the same throughout motion, its displacement in three successive half second intervals are S_{1}, S_{2}, S_{3}.
Then,
а) $S_{1}: S_{2}: S_{3}: 1: 5: 9$
b) $S_{1}: S_{2}: S_{3}: 1: 2: 3$
c) $S_{1}: S_{2}: S_{3}: 1: 1: 1$
d) $S_{1}: S_{2}: S_{3}: 1: 3: 5$
14. Two bodies are thrown simultaneously from a tower with same initial velocity v_{0} : one vertically upwards, the other vertically downwards. The distance between the two bodies after time t is
a) $2 v_{0} t+\frac{1}{2} g t^{2}$
b) $2 v_{0} t$
c) $v_{0} t+\frac{1}{2} g t^{2}$
d) $v_{0} t$
15. An aeroplane files 400 m north and 300 m south and then files 1200 m upwards then net displacement is
a) 1200 m
b) 1300 m
c) 1400 m
d) 1500 m
16. A particle moving in a straight line with uniform acceleration is observed to be a distance a from a fixed point initially. It is at distances b, c, d from the same point after $n, 2 n, 3 n$ second. The acceleration of the particle is
a) $\frac{c-2 b+a}{n^{2}}$
b) $\frac{c+b+a}{9 n^{2}}$
c) $\frac{c+2 b+a}{4 n^{2}}$
d) $\frac{c _b+a}{n^{2}}$
17. The three initial and final position of a man on the x - axis are given as
(i) $(-8 m, 7 m)$ (ii) $(7 m,-3 m)$ and (iii) $(-7 m, 3 m)$

Which pair gives the negative displacement
a) (i)
b) (ii)
c) (iii)
d) (i) and (iii)
18. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up vertically to a height $d / 2$. Neglecting subsequent motion and air resistance, its velocity v varies with the height h above the ground as
a)

c)

19. The displacement of a particle is given by $y=a+b t+c t^{2}-d t^{4}$. The initial velocity and acceleration are respectively
a) $b,-4 d$
b) $-b, 2 c$
c) $b, 2 c$
d) $2 c,-4 d$
20. Four marbles are dropped from the top of a tower one after the other with an interval of one second. The first one reaches the ground 4 seconds. When the first one reaches the ground the distances between the first and second, the second and third and the third and forth will be respectively
a) 35,25 and 15 m
b) 30,20 and 10 m
c) 20,10 and 5 m
d) 40,30 and 20 m

