

CLASS : XITH SUBJECT : PHYSICS DATE : DPP NO. : 8

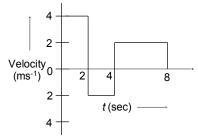
Topic:-MOTION IN A STRAIGHT LINE

- 1. The distance travelled by an object along a straight line in time t is given by $s = 3 4t + 5t^2$, the initial velocity of the object is
 - a) 3 unit
- b)-3 unit
- c) 4 unit
- d)-4 unit
- 2. The displacement-time graph of moving particle is shown below

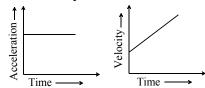
The instantaneous velocity of the particle is negative at the point

a) *D*

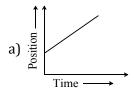
b) *F*

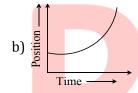

c) *C*

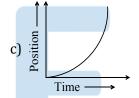
- d)E
- 3. Spotting a police car, you brake a parsche from a speed of 100kmh^{-1} to a speed of 80.0 kmh^{-1} during a displacement of 88.0 m, at a constant acceleration. What is the acceleration?
 - a) -2.5ms⁻²
- b) 1.58 ms⁻²
- c) -1.58ms⁻²
- d) 2.5 ms⁻²
- 4. An aircraft is flying at a height of 34000m above the ground. If the angle subtended at a ground observation point by the aircraft positions 10s apart is 30° , then the speed of the aircraft is
 - a) 19.63ms⁻¹
- b) 1963 *ms*⁻¹
- c) $108 \, ms^{-1}$
- d) 196.3 ms⁻¹
- 5. A particle is projected up with an initial velocity of $80 \, ft/sec$. The ball will be at a height of $96 \, ft$ from the ground after
 - a) 2.0 and 3.0 sec
- b) Only at 3.0 sec
- c) Only at 2.0 sec
- d) After 1 and 2 sec
- 6. A ball *A* is thrown up vertically with speed *u* and at the same instant another ball *B* is released from a height h. At time *t*, the speed of *A* relative to *B* is
 - a) u

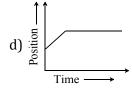

b) 2*u*

- c) u gt
- $d)\sqrt{(u^2-gt)}$


7. A body is moving in a straight line a shown in velocity-time graph. The displacement and distance travelled by in 8s are respectively




- a) 12 m, 20 m
- b) 20m, 12 m
- c) 12 m, 12 m
- d) 20 m, 20 m
- 8. The velocity-time and acceleration-time graphs of a particle are given as



Its position-time graph may be given as

- 9. A stone thrown upward with a speed u from the top of the tower reaches the ground with a velocity 3u. The height of the tower is
 - a) $3u^2/g$
- b) $4u^2/g$
- c) $6u^2/g$
- d) $9u^2/g$
- 10. A particle is projected with velocity v_0 along x axis. The deceleration on the particle is proportional to the square of the distance from the origin i.e., $a = -ax^2$. The distance at which the particle stops is
 - a) $\frac{3v_0}{2\alpha}$
- b) $\left(\frac{3v_0}{2\alpha}\right)^{\frac{1}{3}}$
- c) $\frac{3v_0^2}{2\alpha}$
- $\mathrm{d}\left(\frac{3v_0^2}{2\alpha}\right)^{\frac{1}{3}}$
- 11. A ball is thrown vertically upwards with a velocity of 25 ms⁻¹ from the top of a tower of height 30 m. How long will it travel before it hits ground?
 - a) 6 s

- b) 5 s
- c) 4 s

d) 12 s

12. The motion of a particle along a straight line is described by equation :

$$x = 8 + 12t - t^3$$

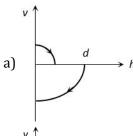
Where x is in metre and t in second. The retardation of the particle when its velocity becomes

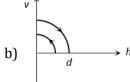
- a) $24ms^{-2}$
- b) Zero
- c) $6m.s^{-2}$
- d) $12ms^{-2}$
- 13. A particle starting from rest falls from a certain height. Assuming that the value of acceleration due to gravity remains the same throughout motion, its displacement in three successive half second intervals are S_1 , S_2 , S_3 .

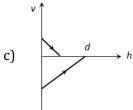
Then,

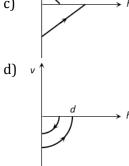
- a) $S_1:S_2:S_3:1:5:9$
- b) $S_1:S_2:S_3:1:2:3$ c) $S_1:S_2:S_3:1:1:1$
- d) $S_1:S_2:S_3:1:3:5$
- 14. Two bodies are thrown simultaneously from a tower with same initial velocity v_0 : one vertically upwards, the other vertically downwards. The distance between the two bodies after time t is
 - a) $2v_0t + \frac{1}{2}gt^2$
- b) $2v_0t$
- c) $v_0 t + \frac{1}{2} g t^2$
- d) $v_0 t$
- 15. An aeroplane files 400 m north and 300 m south and then files 1200 m upwards then net displacement is
 - a) 1200 m
- b) 1300 m
- c) 1400 m
- d) 1500 m
- 16. A particle moving in a straight line with uniform acceleration is observed to be a distance afrom a fixed point initially. It is at distances b,c,d from the same point after n,2n,3n second. The acceleration of the particle is
- b) $\frac{c+b+a}{9n^2}$ c) $\frac{c+2b+a}{4n^2}$ d) $\frac{c-b+a}{n^2}$
- 17. The three initial and final position of a man on the x axis are given as
 - (i) (-8m, 7m) (ii) (7m, -3m) and (iii) (-7m, 3m)

Which pair gives the negative displacement


a) (i)


b) (ii)


c) (iii)


d)(i) and (iii)

18. A ball is dropped vertically from a height *d* above the ground. It hits the ground and bounces up vertically to a height d/2. Neglecting subsequent motion and air resistance, its velocity v varies with the height h above the ground as

- 19. The displacement of a particle is given by $y = a + bt + ct^2 dt^4$. The initial velocity and acceleration are respectively
 - a) $b_{1} 4d$
- b) -*b*, 2*c*
- c) b, 2c
- d) $2c_1 4d$
- 20. Four marbles are dropped from the top of a tower one after the other with an interval of one second. The first one reaches the ground 4 seconds. When the first one reaches the ground the distances between the first and second, the second and third and the third and forth will be respectively
 - a) 35,25 and 15 m
- b) 30,20 and 10 m
- c) 20,10 and 5 m
- d) 40,30 and 20 m