

CLASS : XITH DATE : SUBJECT : PHYSICS DPP NO. : 7

Topic :-MOTION IN A STRAIGHT LINE

- A bullet moving with a velocity of 200 *cm/s* penetrates a wooden block and comes to rest after traversing 4*cm* inside it. What velocity is needed for travelling distance of 9*cm* in same block a) 100 *cm/s* b) 136.2*cm/s* c) 300*cm/s* d) 250 *cm/s*
- 2. The velocity of a particle is $v = v_0 + gt + ft^2$. If its position is x = 0 at t = 0, then its displacement after unit time (t = 1)isa) $v_0 = 2g + 3f$ b) $v_0 + g/2 + f/3$ c) $v_0 + g + f$ d) $v_0 + g/2 + f$
- 3. A car accelerates from rest at a constant rate *a* for some time, after which it decelerates at a constant rate β and comes to rest. If the total time elapsed is *t*, then the maximum velocity acquired by the car is

4. The *x* and *y* coordinates of a particles at any time *t* are given by $x = 7t + 4t^2$ and y = 5t, where *x* and *y* are in metre and *t* in second. The acceleration of particle at t = 5s is a) Zero b) 8ms⁻² c) 20 ms⁻² d) 40 ms⁻²

5. A car moves from *X* to *Y* with a uniform speed v_u and returns to *Y* with a uniform speed v_d . The average speed for this round trip is

a)
$$\frac{2v_d v_u}{v_d + v_u}$$
 b) $\sqrt{v_u v_d}$ c) $\frac{v_d v_u}{v_d + v_u}$ d) $\frac{v_u + v_d}{2}$

6. An automobile in travelling at 50 kmh⁻¹, can be stopped at a distance of 40 m by applying brakes. If the same automobile is travelling at 90 kmh⁻¹, all other conditions remaining same and assuming no skidding, the minimum stopping distance in metre is

a) 72
b) 92.5
c) 102.6
d) 129.6

7. A particle starts its motion from rest under the action of a constant force. If the distance covered in first 10 *seconds* is S_1 and that covered in the first 20 *seconds* is S_2 , then

	a) $S_2 = 2S_1$	b) $S_2 = 3S_1$	c) $S_2 = 4S_1$	d) $S_2 = S_1$
^{8.} An object moving with a speed of 6.25 m/s , is decelerated at a rate given b v is the instantaneous speed. The time taken by the object, to come to rest				en by $\frac{dv}{dt} = 2.5 \sqrt{v}$ where rest would be
	a) 1 <i>s</i>	b)2 <i>s</i>	c) 4 <i>s</i>	d)8 <i>s</i>
9.	A body A moves with a uniform acceleration a and zero initial velocity. Another body B , star from the same point moves in the same direction with a constant velocity v . The two bodies meet after a time t . The value of t is			
	a) $\frac{2v}{a}$	b) $\frac{v}{a}$	c) $\frac{v}{2a}$	d) $\sqrt{\frac{v}{2a}}$
10.	Two spheres of same size, one of mas 2 kg and another of mass 4 kg , are dropped simultaneously from the top of Qutub Minar (height = 72 m). When they are 1 m above the ground, the two spheres have the same a) Momentum b) Kinetic energy c) Potential energy d) Acceleration			
4.4		· · · · ·		
11.	A body of mass 10 kg is moving with a constant velocity of 10 ms ⁻¹ . When a constant force as for 4 s on it, it moves with velocity 2 ms^{-1} in the opposite direction. The acceleration product in it is			hen a constant force acts le acceleration produced
	a) 3 ms^{-2}	b) –3 ms ⁻²	c) 0.3 ms ⁻²	d) -0.3 ms ⁻²
12.	The velocity of a body undergoing	depe <mark>nds on time acc</mark> ord	ing to the equation $v = 2$	$20 + 0.1t^2$. The body is
	a) Uniform acceleration c) Non-uniform acceler	n ratio <mark>n</mark>	b) Uniform retardation d) Zero acceleration	L
13.	Two balls of same size but the density of one is greater than that of the other are dropped from the same height, then which ball will reach the earth first (air resistance is negligible)a) Heavy ballb) Light ballc) Both simultaneouslyd) Will depend upon the density of the balls			
14.	A body thrown vertically upwards with an initial velocity <i>u</i> reaches maximum height in 6 seconds. The ratio of the distances travelled by the body in the first second and the seventh second is			
	a) 1 :1	b)11:1	c) 1 :2	d)1:11
15.	The motion of a particle is described by the equation $x = a + bt^2$ where $a = 15$ cm and $b = 3$ cm/s ² Its instantaneous velocity at time 3 sec will be			
	a) 36 <i>cm/sec</i>	b) 18 cm/sec	c) 16 <i>cm/sec</i>	d)32 <i>cm/sec</i>

- 16. A man throws a ball vertically upward and it rises through 20 *m* and returns to his hands. What was the initial velocity (*u*) of the ball and for how much time (*T*) it remained in the air [g = 10m/s²]
 a) u = 10m/s,T = 2s
 b) u = 10m/s,T = 4s
 c) u = 20m/s,T = 2s
 d) u = 20m/s,T = 4s
- 17. A stone dropped from a building of height *h* and it reaches after *t* seconds on earth. From the same building if two stones are thrown (one upwards and other downwards) with the same velocity *u* and they reach the earth surface after t_1 and t_2 seconds respectively, then

a)
$$t = t_1 - t_2$$
 b) $t = \frac{t_1 + t_2}{2}$ c) $t = \sqrt{t_1 t_2}$ d) $t = t_1^2 t_2^2$

18. The relation $3t = \sqrt{3x} + 6$ describes the displacement of a particle in one direction where x is in *metres* and t in sec. The displacement, when velocity is zero, is a) 24 *metres* b) 12 *metres* c) 5 *metres* d) Zero

19. A body of mass *m* moving along a straight line covers half the distance with a speed of 2ms^{-1} . The remaining half of distance is covered in two equal time intervals with a speed of 3 ms^{-1} and 5 ms^{-1} respectively. The average speed of the particle for the entire journey is a) $\frac{3}{8} \text{ms}^{-1}$ b) $\frac{8}{3} \text{ms}^{-1}$ c) $\frac{4}{3} \text{ms}^{-1}$ d) $\frac{16}{3} \text{ms}^{-1}$

20. The velocity-time graph of a particle in linear motion is shown. Both v and t are in SI units. What is the displacement of the particle from the origin after 8 s?

