CLASS : XITH DATE :

Solutions

DATLY PRACTICE PROBLEM

SUBJECT : PHYSICS DPP NO. : 7

Topic :- MOTION IN A STRAIGHT LINE

(c) As $v^2 = v^2 - 2as \Rightarrow u^2 = 2as \quad (\therefore v = 0)$ $\Rightarrow u^2 \propto s \Rightarrow \frac{u_2}{u_1} = \left(\frac{s_2}{s_1}\right)^{1/2}$ $\Rightarrow u_2 = \left(\frac{9}{4}\right)^{\frac{1}{2}} u_1 = \frac{3}{2}u_1 = 300m/s$ (b)

2

1

$$\int_{0}^{x} dx = \int_{0}^{1} (v_0 + gt + ft^2) dt$$
$$x = v_0 + g\left(\frac{1}{2}\right) + f\left(\frac{1}{3}\right)$$

3

(d)

Let the car accelerate at rate α for time t_1 then maximum velocity attained, $\nu=0+at_1=at_1$

Now, the car decelerates at a rate β for time $(t - t_1)$ and finally comes to rest. Then, $0 = v - \beta(t - t_1) \Rightarrow 0 = \alpha t_1 - \beta t + \beta t_1$

$$\Rightarrow t_1 = \frac{\beta}{\alpha + \beta} t$$

$$\therefore v = \frac{\alpha\beta}{\alpha + \beta} t$$

(b)
$$a = \sqrt{a_x^2 + a_y^2}$$

$$= \left[\left(\frac{d^2 x}{dy} \right)^2 + \left(\frac{d^2 y}{dt^2} \right)^2 \right]^{\frac{1}{2}}$$

4

Here,
$$\frac{d^2y}{dx^2} = 0$$

Hence, $a = \frac{d^2x}{dt^2} = 8 \text{ms}^{-2}$
(a)

5

Let t_1 and t_2 be times taken by the car to go from X to Y and then from Y to X respectively.

Then,
$$t_1 + t_2 = \frac{XY}{v_u} + \frac{XY}{v_d} = XY\left(\frac{v_u + u_d}{v_u v_d}\right)$$

Total distance travelled

$$=XY + XY = 2XY$$

Therefore, average speed of the car for this round trip is

Average speed =
$$\frac{\text{distance travelled}}{\text{time taken}}$$

 $v_{av} = \frac{2 XY}{XY \left(\frac{v_u + v_d}{v_u v_d}\right)}$ or $v_{av} = \frac{2v_u v_d}{v_u + v_d}$
6 (d)
Stopping distance $s \propto u^2$
 $\Rightarrow \qquad \frac{s_2}{40} = \left(\frac{90 \times \frac{5}{18}}{50 \times \frac{5}{18}}\right)^2$
 $\Rightarrow \qquad s_2 = 129.6 \text{ m}$
7 (c)
 $S \propto t^2 \Rightarrow \frac{S_1}{S_2} = \left(\frac{10}{20}\right)^2 \Rightarrow S_2 = 4S_1$
8 (b)
 $\int_{6.25}^0 \frac{dv}{\sqrt{v}} = -2.5 \int_0^t dt$
 $|2\sqrt{v}|_{6.25}^0 = -2.5t$
 $2\sqrt{6.25} = 2.5t$
 $t = 2sec$
9 (a)
 $\frac{1}{2}at^2 = vt \Rightarrow t = \frac{2v}{a}$
10 (d)
Acceleration due to gravity is independent of mass of body

11 (b) v = u + at $\Rightarrow -2 = 10 + a \times 4$ $\therefore a = -3 \text{ ms}^{-2}$ 12 (c) Acceleration = $a = \frac{dv}{dt} = 0.1 \times 2t = 0.2t$ Which is time dependent *i.e.* non-uniform acceleration 13 (c) Since acceleration due to gravity is independent of mass, hence time is also independent of mass (or density) of object 14 (b) Time of ascent $=\frac{u}{g}=6 \sec a = 60m/s$ Distance in first second h_{first} = $60 - \frac{g}{2}(2 \times 1 - 1) = 55m$ Distance in seventh second will be equal to the distance in first second of vertical downward motion hseventh = $\frac{g}{2}(2 \times 1 - 1) = 5 m \Rightarrow h_{\text{first}}/h_{\text{seventh}} = 11:1$ 15 (b) $x = a + bt^2$, $v = \frac{dx}{dt} = 2bt$ Instantaneous velocity $v = 2 \times 3 \times 3 = 18 \ cm/sec$ 16 (d) $u = \sqrt{2gh} = \sqrt{2 \times 10 \times 20} = 20m/s$ and $T = \frac{2u}{g} = \frac{2 \times 20}{10} = 4$ sec 17 (c) If a stone is dropped from height h then $h = \frac{1}{2}gt^{2}$...(i) if a stone is thrown upward with velocity *u* then $h = -u t_1 + \frac{1}{2}gt_1^2$...(ii) If a stone is thrown downward with velocity *u* then $h = ut_2 + \frac{1}{2}gt_2^2$...(iii) From (i) (ii) and (iii) we get $-ut_1 + \frac{1}{2}gt_1^2 = \frac{1}{2}gt^2$...(iv) $ut_2 + \frac{1}{2}gt_2^2 = \frac{1}{2}gt^2$...(v) Dividing (iv) and (v) we get $\therefore \frac{-ut_1}{ut_2} = \frac{\frac{1}{2}g(t^2 - t_1^2)}{\frac{1}{2}g(t^2 - t_2^2)}$

Or
$$-\frac{t_1}{t_2} = \frac{t^2 - t_1^2}{t^2 - t_2^2}$$

By solving $t = \sqrt{t_1 t_2}$
(d)
 $3t = \sqrt{3x} + 6 \Rightarrow 3x = (3t - 6)^2$
 $\Rightarrow x = 3t^2 - 12t + 12$
 $v = \frac{dx}{dt} = 6t - 12$, for $v = 0, t = 2$ sec
 $x = 3(2)^2 - 12 \times 2 + 12 = 0$

19

(b)

18

Let the total distance travelled by the body is 2*S*. If t_1 is the time taken by the body to travel first half of the distance, then

$$t_1 = \frac{S}{2}$$

Let t_2 be the time taken by the body for each time interval for the remaining half journey.

$$\therefore \qquad \qquad S = 3t_2 + 5t_2 = 8t_2$$

So, average speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$ $= \frac{2S}{t_1 + 2t_2} = \frac{2S}{\frac{S}{2} + \frac{S}{4}} = \frac{8}{3} \text{ms}^{-1}$ (a)

20

Displacement = Area of upper trapezium- Area of lower trapezium = $\frac{1}{2}(2+4) \times 4 - \frac{1}{2}(2+4)2 = 12 - 6 = 6m$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	В	D	В	А	D	С	В	A	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	С	С	В	В	D	С	D	В	А

