CLASS : XITH
Solutions

Topic :- MOTION IN A STRAIGHT LINE

1
(a)
$s=u t+\frac{1}{2} a t^{2}$
$s=\frac{1}{2} a t^{2}$ $[\because u=0]$
It is an equation of parabola
(b)

Speed of stone in a vertically upward direction is $20 \mathrm{~m} / \mathrm{s}$. So for vertical downward motion we will consider $u=-20 \mathrm{~m} / \mathrm{s}$
$v^{2}=u^{2}+2 g \mathrm{~h}=(-20)^{2}+2 \times 9.8 \times 200=4320 \mathrm{~m} / \mathrm{s}$
$\therefore v \simeq 65 \mathrm{~m} / \mathrm{s}$
(a)
$\mathrm{h}=\frac{1}{2} g t^{2}=\frac{1}{2} \times 10 \times(4)^{2}=80 \mathrm{~m}$
(c)

Horizontal distance covered by the wheel in half revolution $=\pi R$

So the displacement of the point which was initially in contact with ground
$=A A^{\prime}=\sqrt{(\pi R)^{2}+(2 R)^{2}}$
$=R \sqrt{\pi^{2}+4}=\sqrt{\pi^{2}+4} \quad[$ As $R=1 \mathrm{~m}]$
(b)
$\mathrm{h}=\frac{1}{2} g t^{2}$
$\mathrm{h}^{\prime}=\frac{1}{2} g\left(t-t_{0}\right)^{2}$
$\mathrm{h}-\mathrm{h}^{\prime}=\frac{1}{2} g\left[t^{2}-\left(t-t_{0}\right)^{2}\right]$
$=\frac{1}{2} g\left[t^{2}-t^{2}-t_{0}^{2}+2 t t_{0}\right]$
$\Delta \mathrm{h}=\frac{1}{2} g t_{0}\left(2 t-t_{0}\right)$
$\Delta \mathrm{h}$ is increasing with time
(d)

Average acceleration $=\frac{\text { Change in velocity }}{\text { Time taken }}=\frac{v_{2-}-v_{1}}{t_{2-} t_{1}}$
$=\frac{\left[10+2(5)^{2}\right]-\left[10+2(2)^{2}\right]}{3}=\frac{60-18}{3} 14 \mathrm{~m} / \mathrm{s}^{2}$
(d)

Relative velocity
$=10+5=15 \mathrm{~m} / \mathrm{sec}$
$\therefore t=\frac{150}{15}=10 \mathrm{sec}$
(a)
$s=\frac{1}{2} \mathrm{~g} t^{2}, v=\frac{1}{2} \mathrm{~g} \times 2 t=\mathrm{g} t$
(b)

Average speed is the ratio of distance to time taken
Distance travelled from 0 to $5 \mathrm{~s}=40 \mathrm{~m}$
Distance travelled from 5 to $10 s=0 \mathrm{~m}$
Distance travelled from 10 to $15 \mathrm{~s}=60 \mathrm{~m}$
Distance travelled from 15to $20 s=20$
So, total distance $=40+0+60+20=120 \mathrm{~m}$
Total time taken $=20$ minutes
Hence, average speed
$=\frac{\text { distance travelled }(m)}{\text { time }(\min)}=\frac{120}{20}=6 \mathrm{~m} / \mathrm{min}$
(c)

From given figure, it is clear that the net displacement is zero. So average velocity will be zero
$v=\sqrt{2 \mathrm{gh}}$
After rebounce, $v^{2}=u^{2}-2 \mathrm{gh}$
Or

$$
u^{2}=v^{2}+2 \mathrm{gh}^{\prime}
$$

$\therefore \quad u^{2}=2 \mathrm{gh}^{\prime}$

Or $\quad h^{\prime}=h \times \frac{u^{2}}{v^{2}}$

$$
=h \times\left(\frac{80}{100}\right)^{2}=0.64 h
$$

$u^{2}=v^{2}+2 \mathrm{gh}^{\prime}$

$$
\therefore \quad \frac{v^{2}}{u^{2}}=\frac{2 \mathrm{gh}^{\prime}}{2 \mathrm{gh}^{\prime}}
$$

$$
\mathrm{h}^{\prime}=h \times \frac{u^{2}}{v^{2}}
$$

(b)

In this problem point starts moving with uniform acceleration a and after time t (Position B) the direction of acceleration get reversed i.e. the retardation of same value works on the point. Due to this velocity of points goes on decreasing and at position C its velocity becomes zero. Now the direction of motion of point reversed and it moves from C to A under the effect of acceleration a.
We have to calculate the total time in this motion.
Starting velocity at position A is equal to zero.
Velocity at position $B \Rightarrow v=a t$ [As $u=0$]
$\bar{A} B \quad C$;

Distance between A and $B, S_{A B}=\frac{1}{2} a t^{2}$
As same amount of retardation works on a point and it comes to rest therefore
$S_{B C}=S_{A B}=\frac{1}{2} a t^{2}$
$\therefore S_{A C}=S_{A B}+S_{B C}=a t^{2}$ and time required to cover this distance is also equal to t.
\therefore Total time taken for motion between A and $C=2 t$
Now for the return journey from C to $A\left(S_{A C}=a t^{2}\right)$
$S_{A C}=u t+\frac{1}{2} a t^{2} \Rightarrow a t^{2}=0+\frac{1}{2} a t_{1}^{2} \Rightarrow t_{1}=\sqrt{2} t$
Hence total time in which point returns to initial point
$T=2 t+\sqrt{2} t=(2+\sqrt{2}) t$
(c)
$t=\sqrt{\frac{2 h}{(g+a)}}=\sqrt{\frac{2 \times 2.7}{(9.8+1.2)}}=\sqrt{\frac{5.4}{11}}=\sqrt{0.49}=0.7 \mathrm{sec}$
As $u=0$ and lift is moving upward with acceleration
(d)

Man walks from his home to market with a speed of $5 \mathrm{~km} / \mathrm{h}$. Distance $=2.5 \mathrm{~km}$ and time $=\frac{d}{v}=\frac{2.5}{5}=\frac{1}{2} \mathrm{hr}$ and he returns back with speed of $7.5 \mathrm{~km} / \mathrm{h}$ in rest of time of 10 minutes Distance $=7.5 \times \frac{10}{60}=1.25 \mathrm{~km}$
So, Average speed $=\frac{\text { Total distance }}{\text { TOtal time }}$
$=\frac{(2.5+1.25) \mathrm{km}}{(40 / 60) \mathrm{hr}}=\frac{45}{8} \mathrm{~km} / \mathrm{hr}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	B	A	C	B	D	D	A	A	A			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	B	A	A	B	C	D	B	C	D			

