

CLASS : XITH DATE :

(b)

(a)

(c)

Solutions

SUBJECT : PHYSICS DPP NO. : 6

Topic :- MOTION IN A STRAIGHT LINE

1

(a)

$$s = ut + \frac{1}{2}at^{2}$$

$$s = \frac{1}{2}at^{2}$$
[:: u = 0]

It is an equation of parabola

2

Speed of stone in a vertically upward direction is 20m/s. So for vertical downward motion we will consider u = -20 m/s

 $v^2 = u^2 + 2gh = (-20)^2 + 2 \times 9.8 \times 200 = 4320 \text{ m/s}$ $\therefore v \simeq 65 \text{ m/s}$

3

h =
$$\frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times (4)^2 = 80 m$$

4

Horizontal distance covered by the wheel in half revolution $= \pi R$

So the displacement of the point which was initially in contact with ground $\sqrt{2}$

$$= AA' = \sqrt{(\pi R)^2 + (2R)^2}$$

= $R\sqrt{\pi^2 + 4} = \sqrt{\pi^2 + 4}$ [As $R = 1m$]
(b)
 $h = \frac{1}{2}gt^2$
 $h' = \frac{1}{2}g(t - t_0)^2$

5

h - h' =
$$\frac{1}{2}g[t^2 - (t - t_0)^2]$$

= $\frac{1}{2}g[t^2 - t^2 - t_0^2 + 2tt_0]$
 $\Delta h = \frac{1}{2}gt_0(2t - t_0)$
 Δh is increasing with time
(d)
Average acceleration = $\frac{\text{Change in velocity}}{\text{Time taken}} = \frac{v_2 - v_1}{t_2 - t_1}$
= $\frac{[10 + 2(5)^2] - [10 + 2(2)^2]}{3} = \frac{60 - 18}{3} \frac{14m}{s^2}$
(d)
Relative velocity
= $10 + 5 = 15 \frac{m}{sec}$

 $\therefore t = \frac{150}{15} = 10 \, sec$

8

(a)

6

7

If a body starts from rest with acceleration α and then retards with retardation β and comes to rest. The total time taken for this journey is *t* and distance covered is *S*

Then
$$S = \frac{1}{2} \frac{\alpha \beta t^2}{(\alpha + \beta)} = \frac{1}{2} \frac{5 \times 10}{(5 + 10)} \times t^2$$

 $\Rightarrow 1500 = \frac{1}{2} \frac{5 \times 10}{(5 + 10)} \times t^2 \Rightarrow t = 30 \ sec$
(a)

h =
$$\frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times (4)^2 = 80 m$$

10

9

(a) Effective speed of bullet = speed of bullet + speed of police jeep = 180 m/s + 45 km/h = (180 + 12.5) m/s = 192.5 m/sSpeed of thief's jeep = 153 km/h = 42.5 m/sVelocity of bullet *w.r.t.* thief's car = 192.5 - 42.5 = 150 m/s11 (b) v = u + a t $2 \times 100 = 100 + 10t$ or t = 10 s 12 (b) Bullet will take $\frac{100}{1000} = 0.1 sec$ to reach target. During this period vertical distance (downward) travelled by the bullet $=\frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times 10^{-1}$ $(0.1)^2 m = 5 cm$ So the gun should be aimed 5 *cm* above the target 13 (a) Average velocity $=\frac{2 \times 8 \times 12}{8 + 12}$ ms⁻¹ = 9.6ms⁻¹

14

(a)

(b)

$$s = \frac{1}{2} \operatorname{gt}^2, v = \frac{1}{2} \operatorname{g} \times 2t = \operatorname{gt}$$

15

Average speed is the ratio of distance to time taken Distance travelled from 0 to 5s = 40 mDistance travelled from 5 to 10s = 0 mDistance travelled from 10 to 15s = 60 mDistance travelled from 15to 20s = 20So, total distance = 40 + 0 + 60 + 20 = 120 mTotal time taken = 20 minutesHence, average speed $= \frac{\text{distance travelled } (m)}{\text{time (min)}} = \frac{120}{20} = 6 m/min$

16

(c)

(d)

From given figure, it is clear that the net displacement is zero. So average velocity will be zero

17

$v = \sqrt{2 \text{ gh}}$	(i)						
After rebounce, $v^2 =$	$=u^2 - 2gh$						
Or $u^2 =$	= v ² +2 gh'						
\therefore $u^2 =$	= 2 gh'(ii)						
$\therefore \qquad \qquad \frac{v^2}{u^2}$	$=\frac{2g_{h}}{2g_{h'}}$						
0r h ['] =	$h imes rac{u^2}{v^2}$						
$= h \times \left(\frac{80}{100}\right)^2 = 0.64 h$							

18

(b)

In this problem point starts moving with uniform acceleration a and after time t (Position B) the direction of acceleration get reversed i.e. the retardation of same value works on the point. Due to this velocity of points goes on decreasing and at position C its velocity becomes zero. Now the direction of motion of point reversed and it moves from C to A under the effect of acceleration a.

We have to calculate the total time in this motion.

Starting velocity at position *A* is equal to zero.

Velocity at position $B \Rightarrow v = at$ [As u = 0]

A B C

Distance between *A* and *B*, $S_{AB} = \frac{1}{2}at^2$

As same amount of retardation works on a point and it comes to rest therefore

$$S_{BC} = S_{AB} = \frac{1}{2} a t^{2}$$

$$\therefore S_{AC} = S_{AB} + S_{BC} = a t^{2} \text{ and time required to cover this distance is also equal to } t.$$

$$\therefore \text{ Total time taken for motion between } A \text{ and } C = 2t$$

Now for the return journey from C to $A (S_{AC} = at^{2})$

$$S_{AC} = u t + \frac{1}{2} a t^2 \Rightarrow a t^2 = 0 + \frac{1}{2} a t_1^2 \Rightarrow t_1 = \sqrt{2} t$$

Hence total time in which point returns to initial point $T = 2t + \sqrt{2}t = (2 + \sqrt{2})t$

(c)

(d)

$$t = \sqrt{\frac{2h}{(g+a)}} = \sqrt{\frac{2 \times 2.7}{(9.8+1.2)}} = \sqrt{\frac{5.4}{11}} = \sqrt{0.49} = 0.7 \text{ sec}$$

As u = 0 and lift is moving upward with acceleration

20

Man walks from his home to market with a speed of 5 *km/h*. Distance = 2.5 *km* and time $= \frac{d}{v} = \frac{2.5}{5} = \frac{1}{2} hr \text{ and he returns back with speed of 7.5$ *km/h*in rest of time of 10*minutes* $Distance = 7.5 × <math>\frac{10}{60}$ = 1.25 *km* So, Average speed = $\frac{\text{Total distance}}{\text{Total time}}$ $= \frac{(2.5 + 1.25)km}{(40/60)hr} = \frac{45}{8} km/hr$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	А	В	A	С	В	D	D	А	A	А		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	В	В	A	А	В	С	D	В	С	D		