CLASS : XITH
Solutions

Topic :- MOTION IN A STRAIGHT LINE

2

4
(a)

Distance covered in $5^{\text {th }}$ second
$S_{5^{t_{\mathrm{h}}}}=u+\frac{a}{2}(2 n-1)=0+\frac{a}{2}(2 \times 5-1)=\frac{9 a}{2}$
and distance covered in 5 second,
$S_{5}=u t+\frac{1}{2} a t^{2}=0+\frac{1}{2} \times a \times 25=\frac{25 a}{2}$
$\therefore \frac{S_{5^{\text {th }}}}{S_{5}}=\frac{9}{25}$
(a)
$S \propto u^{2} \therefore \frac{S_{1}}{S_{2}}=\left(\frac{u_{1}}{u_{2}}\right)^{2} \Rightarrow \frac{2}{S_{2}}=\frac{1}{4} \Rightarrow S_{2}=8 \mathrm{~m}$
(c)
$\frac{d x}{d t}=2 a t-3 b t^{2} \Rightarrow \frac{d^{2} x}{d t^{2}}=2 a-6 b t=0 \Rightarrow t=\frac{a}{3 b}$
(c)

Distance travelled by the particle is
$x=40+12 t-t^{3}$
We know that, speed is rate of change of distance i.e.
$v=\frac{d x}{d t}$
$\therefore v=\frac{d}{d t}\left(40+12 t-t^{3}\right)=0+12-3 t^{2}$
But final velocity $v=0$
$\therefore 12-3 t^{2}=0$
$\Rightarrow t^{2}=\frac{12}{3}=4 \Rightarrow t=2 \mathrm{~s}$
Hence, distance travelled by the particle before coming to rest is given by
$x=40+12(2)-(2)^{3}=40+24-8=64-8=56 m$

$$
\begin{equation*}
\mathrm{h}=-u t_{1}-\frac{1}{2} \mathrm{~g} t_{1}^{2} \tag{i}
\end{equation*}
$$

for downward motion

$$
\begin{equation*}
\mathrm{h}=-u t_{2}+\frac{1}{2} g t_{2}^{2} \tag{ii}
\end{equation*}
$$

multiplying Eq. (i) by t_{2} and Eq. (ii) by t_{1} and subtracting Eq. (ii) by Eq. (i), we get

$$
\begin{align*}
\mathrm{h}\left(t_{2}-t_{1}\right) & =\frac{1}{2} \mathrm{~g} t_{1} t_{2}\left(t_{2}-t_{1}\right) \\
\mathrm{h} & =\frac{1}{2} \mathrm{~g} t_{1} t_{2} \tag{iii}
\end{align*}
$$

When stone is dropped from rest $u=0$, reaches the ground in t second.

$$
\begin{equation*}
\therefore \quad \mathrm{h}=\frac{1}{2} \mathrm{~g} t^{2} \tag{iv}
\end{equation*}
$$

Equating Eqs. (iii) and (iv), we get

$$
\begin{gathered}
\frac{1}{2} \mathrm{~g} t^{2}=\frac{1}{2} \mathrm{~g} t_{1} t_{2} \\
\Rightarrow \quad t^{2}=t_{1} t_{2} \Rightarrow t=\sqrt{t_{1} t_{2}}
\end{gathered}
$$

8

9
(c)
$\frac{d v}{d t}=6 t$ or $d v=6 t, m v=\frac{6 t^{2}}{2}=3 t^{2}$,
$d x=3 t^{2} d t \Rightarrow x=3 \frac{t^{3}}{2}=t^{3}$
(b)

Region $O A$ shows that graph bending toward time axis i.e. acceleration is negative.
Region $A B$ shows that graph is parallel to time axis i.e. velocity is zero. Hence acceleration is zero.
Region $B C$ shows that graph is bending towards displacement axis i.e. acceleration is positive.

Region $C D$ shows that graph having constant slope i.e. velocity is constant. Hence acceleration is zero
(a)
$s \propto t^{2}$ [Given] $\therefore s=K t^{2}$
Acceleration $a=\frac{d^{2} s}{d t^{2}}=2 k$ [constant]
It means the particle travels with uniform acceleration
(c)

$$
v^{2}=u^{2}+2 g \mathrm{~h} \Rightarrow v=\sqrt{u^{2}+2 g \mathrm{~h}}
$$

So for both the cases velocity will be equal
(c)

Let both balls meet at point P after time t

The distance travelled by ball $A, \mathrm{~h}_{1}=\frac{1}{2} g t^{2}$
The distance travelled by ball $B, \mathrm{~h}_{2}=u t-\frac{1}{2} g t^{2}$
$\mathrm{h}_{1}+\mathrm{h}_{2}=400 \mathrm{~m} \Rightarrow u t=400, t=400 / 50=8 \mathrm{sec}$
$\therefore \mathrm{h}_{1}=320 \mathrm{~m}$ and $\mathrm{h}_{2}=80 \mathrm{~m}$
(c)
$v=(180-16 x)^{1 / 2}$
As $a=\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d x}{d t}$

$$
\begin{aligned}
& \therefore a=\frac{1}{2}(180-16 x)^{-1 / 2} \times(-16)\left(\frac{d x}{d t}\right) \\
& =-8(180-16 x)^{-1 / 2} \times v \\
& =-8(180-16 x)^{-1 / 2} \times(180-16 x)^{1 / 2}=-8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(a)

Slope of displacement time-graph is velocity

$$
\begin{aligned}
& \frac{v_{1}}{v_{2}}=\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\tan 30^{\circ}}{\tan 45^{\circ}}=\frac{1}{\sqrt{3}} \\
& v_{1}: v_{2}=1: \sqrt{3}
\end{aligned}
$$

(a)

The $v-x$ equation from the given graph can be written as,

$$
\begin{equation*}
v=\left(-\frac{v_{0}}{x_{0}}\right) x+v_{0} \tag{i}
\end{equation*}
$$

$$
\therefore \quad a=\frac{d v}{d t}=\left(-\frac{v_{0}}{x_{0}}\right) \frac{d x}{d t}=\left(-\frac{v_{0}}{x_{0}}\right) v
$$

Substituting v from Eq. (i), we get

$$
\begin{aligned}
& a=\left(-\frac{v_{0}}{x_{0}}\right)\left[\left(-\frac{v_{0}}{x_{0}}\right) x+v_{0}\right] \\
& a=\left(\frac{v_{0}}{x_{0}}\right)^{2} x-\frac{v_{0}^{2}}{x_{0}}
\end{aligned}
$$

Thus, $a-x$ graph is a straight line with positive slope and negative intercept.
(a)

When the stone is released from the balloon. Its height
$\mathrm{h}=\frac{1}{2} a t^{2}=\frac{1}{2} \times 1.25 \times(8)^{2}=40 \mathrm{~m}$ and velocity
$v=a t=1.25 \times 8=10 \mathrm{~m} / \mathrm{s}$
Time taken by the stone to reach the ground
$t=\frac{v}{g}\left[1+\sqrt{1+\frac{2 g \mathrm{~h}}{v^{2}}}\right]=\frac{10}{10}\left[1+\sqrt{1+\frac{2 \times 10 \times 40}{(10)^{2}}}\right]=4 \mathrm{sec}$
(c)

Let v_{1}, v_{2} be the initial speeds of first and second runners. Let t be time by them when the first runner has completed 50 m . During this time, the second runner has covered a
distance $=50-1=49 \mathrm{~m}$.
So, $t=\frac{50}{v_{1}}=\frac{49}{v_{2}}$
Suppose, the second runner increases his speed to v_{3} so that he covers the remaining distance $(=51 \mathrm{~m})$ in times t. So
$t=\frac{51}{v_{3}}=\frac{49}{v_{2}}$
or $v_{3}=\frac{51}{49} v_{2}$
or $v_{3}=\left(1+\frac{2}{49}\right) v_{2}$ or $\frac{v_{3}}{v_{2}}-1=\frac{2}{49}$
or $\frac{v_{3}-v_{2}}{v_{2}}=\frac{2}{49}$
or $\%$ increase $=\frac{2}{49} \times 100=4.1 \%$
(a)

If t_{0} is the reaction time, then the distance covered during decelerated motion is $10-10 t_{0}$.
Now, in the first case,
$10^{2}=2 a\left(10-10 t_{0}\right)$
Similarly, in the second case,
$20^{2}=2 a\left(30-20 t_{0}\right)$
Again, in the third case,

$$
\begin{equation*}
15^{2}=2 a\left(x-5 t_{0}\right) \tag{iii}
\end{equation*}
$$

Dividing Eq.(ii) by Eq. (i), $\frac{20^{2}}{10^{2}}=\frac{30-20 t_{0}}{10-10 t_{0}}$
or $40-40 t_{0}=30-20 t_{0}$
or $20 t_{0}=10$ or $t_{0}=\frac{1}{2} s$
Dividing Eq. (iii) by Eq. (i), we get
$\frac{225}{100}=\frac{x-15 t_{0}}{10-10 t_{0}}$ or $\frac{9}{4}=\frac{x-15 \times \frac{1}{2}}{10-10 \times \frac{1}{2}}$
$45=4 x-30$ or $4 x=75$
or $x=\frac{75}{4} \mathrm{~m}=18.75 \mathrm{~m}$
(c)
$\mathbf{u}=3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}, \mathbf{a}=0.4 \hat{\mathbf{i}}+0.3 \hat{\mathbf{j}}$
Speed $\mathbf{v}=\mathbf{u}+\mathbf{a} t$

$$
\begin{aligned}
& =3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+(0.4 \hat{\mathbf{i}}+0.3 \hat{\mathbf{j}}) 10 \\
& =3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}=7 \hat{\mathbf{i}}+7 \hat{\mathbf{j}} \\
v & =\sqrt{7^{2}+7^{2}}=7 \sqrt{2} \text { unit }
\end{aligned}
$$

(a)

If t_{1} and $2 t_{2}$ are the time taken by particle to cover first and second half distance respectively
$t_{1}=\frac{x / 2}{3}=\frac{x}{6}$
$x_{1}=4.5 t_{2}$ and $x_{2}=7.5 t_{2}$
So, $x_{1}+x_{2}=\frac{x}{2} \Rightarrow 4.5 t_{2}+7.5 t_{2}=\frac{x}{2}$
$t_{2}=\frac{x}{24}$
Total time $t=t_{1}+2 t_{2}=\frac{x}{6}+\frac{x}{12}=\frac{x}{4}$
So, average speed $=4 \mathrm{~m} / \mathrm{sec}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	A	A	A	C	C	C	C	B	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	C	C	A	A	A	C	A	C	A		

