

CLASS : XITH DATE :

SUBJECT : PHYSICS DPP NO. : 4

Topic :-MOTION IN A STRAIGHT LINE

1.	A truck and a car are moving with equal velocit certain distance, then a) Truck will cover less distance before rest c) Both will cover equal distance			city. On appl b) Car wi d) None	ty. On applying the brakes both will stop after b) Car will cover less distance before rest d) None			
2.	A body freely falling fr The distance it has to a) 2 <i>h</i>	rom the re fall down b) 4 <i>h</i>	est has a veloc for its velocity	ity ' <i>v</i> ' after i y to become c) 6h	it falls throu double, is	ugh a height 'h'. d)8 <i>h</i>		
3.	Two trains travelling s . The drivers of the transformed for the deceleration avoid collision should a) 11.8 m/s^2	on the san rains begin ations to b be b) 11.0 a	ne track are a n to decelerat ne uniform an m/s ²	pproaching e simultaneo d equal, the c) 2.1 m/	each other ously when value of the s ²	with equal speeds of $40m/$ they are just $2.0km$ apart. e deceleration to barely d) $0.8 m/s^2$		
4.	The numerical ratio o a) Less than one c) Equal to or less tha	f displacer n one	nent to the di	stance cove b) Equal t d) Equal t	ance covered is always b) Equal to one d) Equal to or greater than one			
5.	A student is standing at a distance of 50 m from the bus. As soon as the bus begins its motion with an acceleration of 1 ms ⁻² , the students starts running towards the bus with a uniform velocity <i>u</i> . Assuming the motion to be along a straight road, the minimum value of <i>u</i> , so that the student is able to catch the bus is a) 8 ms ⁻¹ b) 5 ms ⁻¹ c) 12 ms ⁻¹ d) 10 ms ⁻¹							
6.	A cat moves from <i>X</i> to average speed for this a) $-\frac{2v_d v_u}{v_d + v_u}$	b <i>Y</i> with a second to b) $\sqrt{v_u v_b}$	uniform speed rip is d	d v_u and retuct c) $\frac{v_d v_u}{v_d + v_u}$	urns to X wi	ith a uniform speed v_d . The d) $\frac{v_u + v_d}{2}$		

7. The graph of displacement v/s time is

Its corresponding velocity-time graph will be

8. Figures (i) and (ii) below show the displacement-time graphs of two particles moving along the *x*-axis. We can say that

- a) Both the particles are having a uniformly accelerated motion
- b) Both the particles are having a uniformly retarded motion
- c) Particle (i) is having a uniformly accelerated motion while particle (ii) is having a uniformly retarded motion
- d) Particle (i) is having a uniformly retarded motion while particle (ii) is having a uniformly accelerated motion
- 9. Consider the acceleration, velocity and displacement of a tennis ball as it falls to the ground and bounces back. Directions of which of these changes in the process

a) Velocity only	b) Displacement and velocity
c) Acceleration, velocity and displacement	d) Displacement and acceleration

- 10. A lift in which a man is standing, is moving upward with a speed of 10ms^{-1} . The man drops a coin from a height of 4.9m and if g = 9.8 ms⁻², then the coin reaches the floor of the lift after a time
 - a) $\sqrt{2}s$ b) 1 s c) $\frac{1}{2}s$ d) $\frac{1}{\sqrt{3}}s$
- 11. Two balls are dropped to the ground from different heights. One ball is dropped 2*s* after the other but they both strike the ground at the same time. If the first ball takes 5*s* to reach the ground, then the difference in initial heights is ($g = 10 \text{ ms}^{-2}$)

	a) 20 <i>m</i>	b)80 <i>m</i>	c) 170 <i>m</i>	d)40m				
12.	The displacement of a particle starting from rest (at $t = 0$) is given by $s = 6t^2 - t^3$. The time in							
	seconds at which the particle will attain zero velocity again, is							
	a) 2	b)4	c) 6	d)8				
13. A body falls from rest in the gravitational field of the earth. The distance travelled i								
	second of its motion is $(g = 10 m/s^2)$							
	a) 25 <i>m</i>	b)45 <i>m</i>	c) 90 <i>m</i>	d)125m				
14.	• A body is moving with uniform acceleration covers 200 m in the first 2 s and 220 m in the r							
	4 s. find the velocity in	ms ⁻¹ after 7 s.						
	a) 10	b) 15	c) 20	d)30				
4 5								
15.	A ball is dropped on th	e floor from a height of	10m. It rebounds to a he	ight of 2.5m. If the ball is				
	in contact with the floc	or for 0.01 s, the average	e acceleration during con	itact is nearly [Take				
	$g = 10 \text{ms}^{-2}$		2.	_				
	a) $500\sqrt{2}$ ms ⁻² upwards	5	b) 1800 ms ⁻² downwar	ds				
	c) 1500 $\sqrt{5}$ ms ⁻² upwards		d) 1500√2 ms ⁻² downwards					
16.	A ball is thrown vertically u <mark>pwar</mark> ds wit <mark>h an i</mark> nitia <mark>l velo</mark> city 1.4 ms ⁻¹ returns in 2 s. The total							
	displacement of the ba	ll will be						
	a) 22.4 m	b) Zero	c) 33.6	d) 44.8 m				
17.	A particle starts from r	est at $t = 0$ and moves i	n a straight line with an	acceleration as shown				
	below. The velocity of	the particle at $t = 3s$ is						
	$\frac{1}{2}$							
	uo (t							
	$\begin{array}{c c} \vdots \\ \vdots \\ 1 \\ 2 \\ 3 \\ 4 \\ \rightarrow \text{Time}(s) \end{array}$							
	× a) 2 m a ⁻¹	b) $4 m e^{-1}$	$a)$ (m a^{-1}	d) 0				
	a) 2 ms -	$0)4ms^{-1}$	c) 6 ms -	u)8 ms -				
1Q	A hug haging to mayo	with an accolonation of 1	me^{-2} A man who is $40m$	habind the bug starts				
10.	A bus begins to move v	vitil all acceleration of 1	ill he able to gatch the h	benning the bus starts				
	running at 10 ms to c	h) L	viii be able to catch the b	d) O a				
	a) 65	0)55	CJ 35	u j 85				
10	A truck and a car are m	owing with agual valagi	ty. On applying the brak	as both will stop after				
19.	A tiuck allu a cai ale li	ioving with equal veloci	ty. On applying the black	es both will stop alter				
	a) Truck will covor loss	distance before rest	h) Car will covor loss d	istanco hoforo rost				
	a) Truck will cover less	distance before rest	d) None					
	cj both will cover equal distance uj None							
20	Velocity of a body on reaching the point from which it was projected upwards is							
20.	a) $n = 0$	$h_{12} = 2u$	$c_{11} = 0.5u$	d) u = u				
	u <i>j v</i> = 0	5 j v - 2 u	cj v = 0.5u	u) v — u				

