CLASS : XITH
Solutions

Topic:- MOTION IN A STRAIGHT LINE

1
(c)

Stopping distance $=\frac{\text { Kinetic energy }}{\text { Retarding force }}=\frac{\frac{1}{2} m u^{2}}{F}$
$=\frac{u^{2}}{2 \mu g}[F=\mu m g]$
So both will cover equal distance
(b)

Let at point A initial velocity of body is equal to zero
for path $A B: v^{2}=0+2 g \mathrm{~h} \quad .$. (i)
for path $A C:(2 v)^{2}=0+2 g x$
$4 v^{2}=2 g x$
Solving (i) and (ii), $x=4 h$

(d)

Both trains will travel a distance of 1 km before to come in rest. In this case by using $v^{2}=$ $u^{2}+2 a s$
$\Rightarrow 0=(40)^{2}+2 a \times 1000 \Rightarrow a=-0.8 \mathrm{~m} / \mathrm{s}^{2}$

4

5
(c)

Since displacement is always less than or equal to distance, but never greater than distance. Hence numerical ratio of displacement to the distance covered is always equal to or less than one
(d)

The student is able to catch the bus if in time t the distance travelled by him is equal to the distance travelled by bus in time t
ie, $\quad s_{1}=s_{2}$
From Eq. (i)

$$
0+\frac{1}{2} a t^{2}=u t-d
$$

Or $a t^{2}-2 u t+2 d=0$
It is quadratic equation
So, $t=\frac{+2 u \pm \sqrt{4 u^{2}-8 a d}}{2}=\frac{+2 u \pm 2 \sqrt{u^{2}-2 a d}}{2}$
For t to be real

$$
u \geq \sqrt{2 a d} \geq \sqrt{2 \times 1 \times 50}=10 \mathrm{~ms}^{-1}
$$

(a)

Average speed $=\frac{2 v_{d} v_{u}}{v_{d}+v_{u}}$
(a)

We know that the velocity of body is given by the slope of displacement - time graph so it is clear that initially slope of the graph is positive and after some time it becomes zero (corresponding to the peak of graph) and it will become negative
(b)

Only directions of displacement and velocity gets changed, acceleration is always directed vertically downward
(b)

We will solve the problem is terms of relative initial velocity, relative acceleration and relative displacement of the coin with respect to the floor of the lift.
$u=10-10=0 \mathrm{~ms}^{-1}, a=9.8 \mathrm{~ms}^{-2}, s=4.9 \mathrm{~m}, t=$?
$4.9=0 \times t+\frac{1}{2} \times 9.8 \times t^{2}$
or $4.9 t^{2}=4.9$ or $t=1 \mathrm{~s}$
(b)
$S_{2}=\frac{1}{2} g t_{2}^{2}=\frac{10}{2} \times(3)^{2}=45 \mathrm{~m}$
$S_{1}=\frac{1}{2} g t_{1}^{2}=\frac{10}{2} \times(5)^{2}=125 \mathrm{~m}$
$\therefore S_{1}-S_{2}=125-45=80 m$

Or

$$
\begin{equation*}
u+a=100 \tag{i}
\end{equation*}
$$

In IInd case

$$
\begin{aligned}
s_{2} & =u t_{2}+\frac{1}{2} a t_{2}^{2} \\
420 & =6 u+18 a \quad\left(\because t_{2}=2+4=6 \mathrm{~s}\right)
\end{aligned}
$$

Or $\quad 3 a+u=70$
Solving Eqs. (i) and (ii), we get

And

$$
\begin{aligned}
& a=-15 \mathrm{~ms}^{-2} \\
& u=115 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
=115-15 \times 7=10 \mathrm{~ms}^{-1}
$$

(d)

Average acceleration $=\frac{\Delta v}{\Delta^{t}}$
$=\frac{\sqrt{2 \mathrm{gh}^{\prime}}-(-\sqrt{2 \mathrm{gh}})}{\Delta^{t}}=\frac{\sqrt{2 \mathrm{gh}^{\prime}}+\sqrt{2 \mathrm{gh}}}{\Delta^{t}}$
$=\frac{\sqrt{2 \times 10 \times 2.5}+\sqrt{2 \times 10 \times 10}}{0.01} \mathrm{~ms}^{-2}$
$=\frac{\sqrt{15}+\sqrt{200}}{0.01} \mathrm{~ms}^{-2}=\frac{5 \sqrt{2}+10 \sqrt{2}}{0.01} \mathrm{~ms}^{-2}$
$=\frac{15 \sqrt{2}}{0.01} \mathrm{~ms}^{-2}=1500 \sqrt{2} \mathrm{~ms}^{-2}$
The upward velocity has been taken as positive. Since average acceleration is positive therefore its direction is vertically upward.
(a)

Le the initial velocity $=u$
And acceleration $=a$
In Ist case $\quad s_{1}=u t_{1}+\frac{1}{2} a t_{1}^{2}$

$$
200=2 u+2 a \quad\left(\because t_{1}=2 \mathrm{~s}\right)
$$

$$
\begin{equation*}
0 \tag{ii}
\end{equation*}
$$

$$
v=u+a t
$$

$10 t=48+\frac{1}{2} \times 1 \times t^{2}$
$t^{2}-20 t+96=0$
$(t-12)(t-8)=0$
$t=8 \mathrm{~s}$ and $t=12 \mathrm{~s}$
Thus the man will be able to catch the bus after $8 s$
(c)

Stopping distance $=\frac{\text { Kinetic energy }}{\text { Retarding force }}=\frac{\frac{1}{2} m u^{2}}{F}$
$=\frac{u^{2}}{2 \mu g}[F=\mu m g]$
So both will cover equal distance
(d)

Body reaches the point of projection with same velocity

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	B	D	C	D	A	A	C	B	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	B	B	A	D	B	B	D	C	D			

