CLASS : XITH
DATE :

TOPIC :- MOTION IN A STRAIGHT LINE

2
(a)

The equation of motion

$$
\begin{aligned}
s & =u t+\frac{1}{2} a t^{2} \\
& =0+\frac{1}{2} a t^{2}=\frac{1}{2} a t^{2}
\end{aligned}
$$

The graph plot is as shown.

3
(b)

Let the initial velocity of ball be u
Time of rise $t_{1}=\frac{u}{g+a}$ and height reached $=\frac{u^{2}}{2(g+a)}$
Time of fall t_{2} is given by
$\frac{1}{2}(g-a) t_{2}^{2}=\frac{u^{2}}{2(g+a)}$
$\Rightarrow t_{2}=\frac{u}{\sqrt{(g+a)(g-a)}}=\frac{u}{(g+a)} \sqrt{\frac{g+a}{g-a}}$
$\therefore t_{2}>t_{1}$ because $\frac{1}{g+a}<\frac{1}{g-a}$
(b)
$v=u+a t=u+\left(\frac{F}{m}\right) t=20+\left(\frac{100}{5}\right) \times 10=220 \mathrm{~m} / \mathrm{s}$
(d)

If t_{1} and t_{2} are the time, when body is at the same height then,
$\mathrm{h}=\frac{1}{2} g t_{1} t_{2}=\frac{1}{2} \times g \times 2 \times 10=10 g$
(b)

Relative velocity of one train w.r.t. other
$=10+10=20 \mathrm{~m} / \mathrm{s}$
Relative acceleration $=0.3+0.2=0.5 \mathrm{~m} / \mathrm{s}^{2}$
If train crosses each other then from $s=u t+\frac{1}{2} a t^{2}$
$A s, s=s_{1}+s_{2}=100+125=225$
$\Rightarrow 225=20 t+\frac{1}{2} \times 0.5 \times 0.5 \times t^{2} \Rightarrow 0.5 t^{2}+40 t-450=0$
$\Rightarrow t=\frac{-40 \pm \sqrt{1600+4 .(005) \times 450}}{1}=-40 \pm 50$
$\therefore t=10 \sec$ (Taking +ve value)
(a)

Distance between the balls = Distance travelled by first ball in 3 seconds - Distance
travelled by second ball in 2 seconds $=\frac{1}{2} g(3)^{2}-\frac{1}{2} g(2)^{2}=45-20=25 \mathrm{~m}$
(b)

The velocity of balloon at height $\mathrm{h}, v=\sqrt{2\left(\frac{g}{8}\right) \mathrm{h}}$
When the stone released from this balloon, it will go upward with velocity, $=\frac{\sqrt{g h}}{2}$ (Same as that of balloon). In this condition time taken by stone to reach the ground
$t=\frac{v}{g}\left[1+\sqrt{1+\frac{2 g_{\mathrm{h}}}{v^{2}}}\right]=\frac{\sqrt{g \mathrm{~h}} / 2}{g}\left[1+\frac{2 g_{\mathrm{h}}}{g_{\mathrm{h}} / 4}\right]$ $=\frac{2 \sqrt{g \mathrm{~h}}}{g}=2 \sqrt{\frac{\mathrm{~h}}{g}}$
(a)

Taking the motion from 0 to $2 s$
$u=0, a=3 \mathrm{~ms}^{-2}, t=2 s, v=$?
$v=u+a t=0+3 \times 2=6 \mathrm{~ms}^{-1}$
Taking the motion from $2 s$ to $4 s$
$v=6+(-3)(2)=0 \mathrm{~ms}^{-1}$
(a)
$H_{\text {max }}=\frac{u^{2}}{2 g} \Rightarrow H_{\text {max }} \propto \frac{1}{g}$
On planet B value of g is $1 / 9$ times to that of A. So value of $H_{\max }$ will become 9 times i.e. 2

$$
\times 9=18 \text { metre }
$$

(a)

After balling out from point A parachutist falls freely under gravity. The velocity acquired by it will ' v '

From $v^{2}=u^{2}+2 a s=0+2 \times 9.8 \times 50=980$
[As $u=0, a=9.8 \mathrm{~m} / \mathrm{s}^{2}, s=50 \mathrm{~m}$]
At point B, parachute opens and it moves with retardation of $2 \mathrm{~m} / \mathrm{s}^{2}$ and reach at ground (point C) with velocity of $3 \mathrm{~m} / \mathrm{s}$
For the part ' $B C$ ' by applying the equation $v^{2}=u^{2}+2 a s$
$v=3 \mathrm{~m} / \mathrm{s}, u=\sqrt{980} \mathrm{~m} / \mathrm{s}, a=-2 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~s}=\mathrm{h}$
$\Rightarrow(3)^{2}=(\sqrt{980})^{2}+2 \times(-2) \times \mathrm{h} \Rightarrow 9=980-4 \mathrm{~h}$
$\Rightarrow \mathrm{h}=\frac{980-9}{4}=\frac{971}{4}=242.7 \cong 243 \mathrm{~m}$
So, the total height by which parachutist bail out $=50+243=293 \mathrm{~m}$
(d)

Acceleration due to gravity is independent of mass of body
(b)

Distance average speed $=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}=\frac{2 \times 2.5 \times 4}{2.5+4}$
$=\frac{200}{65}=\frac{40}{13} \mathrm{~km} / \mathrm{h} r$
(d)
$S \propto u^{2}$. If u becomes 3 times then S will become 9 times
i.e. $9 \times 20=180 \mathrm{~m}$
(d)

Average speed $=-\frac{\text { Total distance }}{\text { Total time }}=\frac{x}{t_{1}+t_{2}}$

$$
=\frac{x}{\frac{x / 3}{v_{1}}+\frac{2 x / 3}{v_{2}}}=\frac{1}{\frac{1}{3 \times 20}+\frac{2}{3 \times 60}}=36 \mathrm{~km} / \mathrm{hr}
$$

(d)
$\because v=0+n a \Rightarrow a=v / n$
Now, distance travelled in n sec. $\Rightarrow S_{n}=\frac{1}{2} a n^{2}$ and
distance travelled in $(n-2) \sec \Rightarrow S_{n_{-}^{2}}=\frac{1}{2} a(n-2)^{2}$
\therefore Distance travelled in last 2 seconds,

$$
\begin{aligned}
& =S_{n}-S_{n-2}=\frac{1}{2} a n^{2}-\frac{1}{2} a(n-2)^{2} \\
& \frac{a}{2}\left[n^{2}-(n-2)^{2}\right]=\frac{a}{2}[n+(n-2)][n-(n-2)] \\
& =a(2 n-2)=\frac{v}{n}(2 n-2)=\frac{2 v(n-1)}{n}
\end{aligned}
$$

(c)

When packet is released from the balloon, it acquires the velocity of balloon of value $12 \mathrm{~m} /$
s. Hence velocity of packet after 2 sec , will be
$v=u+g t=12-9.8 \times 2=-76 \mathrm{~m} / \mathrm{s}$
(b)

Distance covered $=$ Area enclosed by $v-t$ graph
$=$ Area of triangle $=\frac{1}{2} \times 4 \times 8=16 \mathrm{~m}$
(c)

Mass does not affect maximum height
$H=\frac{u^{2}}{2 g} \Rightarrow H \propto u^{2}$, So if velocity is doubled then height will become four times.i.e. $H=20 \times$ $4=80 \mathrm{~m}$
(c)

Distance covered in a particular time is
$s_{n}=u+\frac{1}{2} \mathrm{~g}(2 \mathrm{n}-1)$
$s_{1}=0+\frac{1}{\mathrm{~g}}(2 \times 1-1)=\frac{\mathrm{g}}{2}$
$s_{2}=0+\frac{1}{2} g(2 \times 2-1)=\frac{3}{2} g$
And $s_{3}=0+\frac{1}{2} g(2 \times 3-1)=\frac{5}{2} g$
Hence, the required ration is
$s_{1}: s_{2}: s_{3}=\frac{\mathrm{g}}{2}: \frac{3}{2} \mathrm{~g}: \frac{5}{2} \mathrm{~g} \quad=1: 3: 5$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	A	B	B	D	B	A	B	A	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	A	D	B	D	D	D	C	B	C	C		

