

CLASS : XIth DATE : SUBJECT : CHEMISTRY DPP No. : 9

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

- The equivalent weight of a substances is the weight which either combines of displaces:
 a) 8 part oxygen
 b) 1 part hydrogen
 c) 35.5 part chlorine
 d) All of these
- 2. Which of the following is correct?

- a) $\frac{\text{wt. of solute}}{\text{wt. of solute}} \times 100$ b) $\frac{\text{wt. of solute}}{\text{volume of solute}} \times 100$ c) $\frac{\text{volume of solute}}{\text{volume of solute}} \times 100$ d) All of the above
- 4. In the aqueous solution of sulphuric acid the mole fraction of water is 0.85. the molality of the solution is :
 - a) 8.9 m b) 0.19 m c) 9.8 m d) 15 m
- 5. The number of atoms in 0.1 mol of a triatomic gas is: $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$ a) 6.026×10^{23} b) 1.806×10^{23} c) 3.600×10^{23} d) 1.80×10^{23}

6.	Which contains greates a) 1 g of 0 b) 1 g of 0 ₂ c) 1 g of 0 ₃ d) All have the same nu	st number of oxygen ato umber of atoms	oms?		
7.	The electrochemical equivalent of a metal is 'x' g coulomb ⁻¹ . The equivalent weight of metal is				
	a) <i>x</i>	b) <i>x</i> × 96500	c) $\frac{x}{96500}$	d) $1.6 \times 10^{-19} \times x$	
8.	By Victor meyer's meth a) Non-volatile solid	hod, one determine the v b) All substances	vapour density if: c) Volatile liquid	d) Electrolyte	
9.	The percentage of oxyg a) 40	gen in NaOH is: b) 16	c) 8	d) 1	
10.	Sulphur forms the chlo equivalent mass of sulj a) 8	prides S_2Cl_2 and SCl_2 . The phur S_2Cl_2 is: b) 16	e equivalent mass of sul c) 64	phur in SCl ₂ is 16. The d) 32	
11.	1.520 g of the hydroxic metal is a) 1.520	le of a metal on ignition b) 0.995	gave 0.995 g of oxide. T c) 19.00	he equivalent weight of d) 9.00	
12.	The product of atomic by: a) Dalton's law	weight and specific heat b) Avogadro's law	t of a metal is approxima c) Newton's law	ately 6.4. This was given d)Dulong Petit's law	
13.	If a mixture containing 3 moles of hydrogen and 1 mole of nitrogen is converted completely into ammonia, the ratio of initial and final volumes under the same temperature and pressure would be:				
	a) 3 : 1	b)1:3	c) 2 : 1	d)1:2	
14.	. The least count of an instrument is 0.01 cm. Taking all precautions, the most possible erro the measurement can be				
	a) 0.005 cm	b) 0.01 cm	c) 0.0001 cm	d) 0.1 cm	
15.	A metal <i>M</i> forms a com a) <i>M</i> ₂ SO ₄	apound M ₂ HPO ₄ . The for b) MSO ₄	rmula of the metal sulph $_{\rm C)} M({\rm SO}_4)_2$	tate is: d) $M_2(SO_4)_3$	

5. If the molecular weight of Na ₂ S ₂ O ₃ and I ₂ are M_1 and M_2 respectively, then what will be the equivalent weight of Na ₂ S ₂ O ₃ and I ₂ in the following reaction? $2S_2O_3^{2^-} + I_2 \rightarrow S_4O_6^{2^-} + 2I^-$					
	c) 2 <i>M</i> ₁ , <i>M</i> ₂	d) $M_1, 2M_2$			
• In the final answer of the expression $\frac{(29.2 - 20.2)(1.79 \times 10^5)}{1.37}$, the number of significant figures					
b)2	c) 3	d)4			
B. Haemoglobin contains 0.33% of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (at. Wt. of $Fe = 56$) present in one molecule of haemoglobin is					
b) 1	c) 4	d)2			
P. In the equation, $H_2S + 2HNO_3 \rightarrow 2H_2O + 2NO_2 + S$ The equivalent weight of hydrogen sulphide is a) 18 b) 68 c) 34 d) 17					
b)68	cJ 34	d) 17			
20. In a compound C, H and N a <mark>re present is 9 : 1</mark> : 3.5 by weight. If molecular weight of the compound is 108, then the <mark>mole</mark> cular fo <mark>rmul</mark> a of the compound is					
b)C ₃ H ₄ N	c) C ₆ H ₈ N ₂	d) C ₉ H ₁₂ N ₃			
	ht of Na ₂ S ₂ O ₃ and I ₂ in the ${}_{4}O_{6}^{2-} + 2I^{-}$ b) $M_{1}M_{2}/2$ wer of the expression $\frac{(29.2 + 1)}{2}$ b) 2 ontains 0.33% of iron by we 57200. The number of iron is b) 1 $2H_{2}O + 2NO_{2} + S$ weight of hydrogen sulphible b) 68 C, H and N are present is C 8, then the molecular form	ht of Na ₂ S ₂ O ₃ and I ₂ in the following reaction? ${}_{4}O_{6}^{2-} + 2I^{-}$ b) $M_{1}M_{2}/2$ c) $2M_{1}M_{2}$ wer of the expression $\frac{(29.2 - 20.2)(1.79 \times 10^{5})}{1.37}$, the n b) 2 c) 3 ontains 0.33% of iron by weight. The molecular weight of iron atoms (at. Wt. of <i>Fe</i> = 100 molecular weight of 100 molecular formula of the compound			