CLASS : XIth
SUBJECT : CHEMISTRY
DATE :

Topic :-SOME BASIC CONCEPTS OF CHEMISTRY

1. The equivalent weight of a substances is the weight which either combines of displaces:
a) 8 part oxygen
b) 1 part hydrogen
c) 35.5 part chlorine
d) All of these
2. Which of the following is correct?
a) Eq. wt. of element $=\frac{\text { at. wt. }}{\text { valence }}$

Eq. wt. of compound $=$
b)

$$
\frac{\text { mol. wt. }}{\text { total charge on cation or anion }}
$$

c) Eq. wt. of acid $=\frac{\text { mol. wt. }}{\text { basicity }}$
d) Eq. wt. of base $=\frac{\text { mol. wt. }}{\text { acidity }}$
3. Which represents per cent by volume?
a) $\frac{\mathrm{wt} \text {. of solute }}{\text { wt. of solution }} \times 100$
b) $\frac{\mathrm{wt} \text {. of solute }}{\text { volume of solution }} \times 100$
c) $\frac{\text { volume of solute }}{\text { volume of solution }} \times 100$
d) All of the above
4. In the aqueous solution of sulphuric acid the mole fraction of water is 0.85 . the molality of the solution is :
a) 8.9 m
b) 0.19 m
c) 9.8 m
d) 15 m
5. The number of atoms in 0.1 mol of a triatomic gas is:
$\left(N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
a) 6.026×10^{23}
b) 1.806×10^{23}
c) 3.600×10^{23}
d) 1.80×10^{23}
6. Which contains greatest number of oxygen atoms?
a) 1 g of 0
b) 1 g of O_{2}
c) 1 g of O_{3}
d) All have the same number of atoms
7. The electrochemical equivalent of a metal is ' x ' g coulomb ${ }^{-1}$. The equivalent weight of metal is
a) x
b) $x \times 96500$
c) $\frac{x}{96500}$
d) $1.6 \times 10^{-19} \times x$
8. By Victor meyer's method, one determine the vapour density if:
a) Non-volatile solid
b) All substances
c) Volatile liquid
d) Electrolyte
9. The percentage of oxygen in NaOH is:
a) 40
b) 16
c) 8
d) 1
10. Sulphur forms the chlorides $\mathrm{S}_{2} \mathrm{Cl}_{2}$ and SCl_{2}. The equivalent mass of sulphur in SCl_{2} is 16 . The equivalent mass of sulphur $\mathrm{S}_{2} \mathrm{Cl}_{2}$ is:
a) 8
b) 16
c) 64
d) 32
11. 1.520 g of the hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal is
a) 1.520
b) 0.995
c) 19.00
d) 9.00
12. The product of atomic weight and specific heat of a metal is approximately 6.4. This was given by:
a) Dalton's law
b) Avogadro's law
c) Newton's law
d) Dulong Petit's law
13. If a mixture containing 3 moles of hydrogen and 1 mole of nitrogen is converted completely into ammonia, the ratio of initial and final volumes under the same temperature and pressure would be:
a) $3: 1$
b) $1: 3$
c) $2: 1$
d) $1: 2$
14. The least count of an instrument is 0.01 cm . Taking all precautions, the most possible error in the measurement can be
a) 0.005 cm
b) 0.01 cm
c) 0.0001 cm
d) 0.1 cm
15. A metal M forms a compound $M_{2} \mathrm{HPO}_{4}$. The formula of the metal sulphate is:
a) $\mathrm{M}_{2} \mathrm{SO}_{4}$
b) MSO_{4}
c) $M\left(\mathrm{SO}_{4}\right)_{2}$
d) $M_{2}\left(\mathrm{SO}_{4}\right)_{3}$
16. If the molecular weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and I_{2} are M_{1} and M_{2} respectively, then what will be the equivalent weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and I_{2} in the following reaction?
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+2 \mathrm{I}^{-}$
a) M_{1}, M_{2}
b) $M_{1}, M_{2} / 2$
c) $2 M_{1}, M_{2}$
d) $M_{1}, 2 M_{2}$
17. In the final answer of the expression $\frac{(29.2-20.2)\left(1.79 \times 10^{5}\right)}{1.37}$, the number of significant figures is
a) 1
b) 2
c) 3
d) 4
18. Haemoglobin contains 0.33% of iron by weight. The molecular weight of haemoglobin is approximately 67200 . The number of iron atoms (at. Wt. of $F e=56$) present in one molecule of haemoglobin is
a) 6
b) 1
c) 4
d) 2
19. In the equation,
$\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+\mathrm{S}$
The equivalent weight of hydrogen sulphide is
a) 18
b) 68
c) 34
d) 17
20. In a compound C, H and N are present is $9: 1: 3.5$ by weight. If molecular weight of the compound is 108, then the molecular formula of the compound is
a) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}_{2}$
b) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}$
c) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}$
d) $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{3}$

