CLASS : XIth
SUBJECT : CHEMISTRY
DATE :

Topic :-SOME BASIC CONCEPTS OF CHEMISTRY

1. If we consider that $\frac{1}{6}$, in place of $\frac{1}{12}$, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will
a) Be a function of the molecular mass or the substance
b) Remain unchanged
c) Increase two fold
d) Decrease twice
2. A compound contains 54.55% carbon, 9.09 \% hydrogen, 36.36% oxygen. The empirical formula of this compound is
a) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}$
b) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
d) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
3. The total number of protons, electrons and neutrons in 12 g of ${ }_{6}^{12} \mathrm{C}$ is:
a) 1.084×10^{25}
b) 6.022×10^{23}
c) 6.022×10^{22}
d) 18
4. The volume of $0.25 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ required to neutralise 25 mL of $0.03 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is:
a) 1.32 mL
b) 13.2 mL
c) 26.4 mL
d) 2.0 mL
5. 100 mL of PH_{3} when decomposed produces phosphorus and hydrogen. The change in volume is:
a) 50 mL increase
b) 500 mL decrease
c) 900 mL decrease
d) None of these
6. Density of a 2.05 M solution of acetic acid in water is $1.02 \mathrm{~g} / \mathrm{mL}$. The molality of the solution is:
a) $1.14 \mathrm{~mol} \mathrm{~kg}^{-1}$
b) $3.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
c) $2.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
d) $0.44 \mathrm{~mol} \mathrm{~kg}^{-1}$
7. What weight of sodium hydroxide is required to neutralize 100 mL of 0.1 N HCl ?
a) 4.0 g
b) 0.04 g
c) 0.4 g
d) 2.0 g
8. The amount of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in 250 mL of 0.25 M solution is :
a) 6.625 g
b) 6.0 g
c) 66.25 g
d) 6.225 g
9. Mole fraction of A in water is 0.2 . The molality of A in water is:
a) 13.8
b) 13.6
c) 14.0
d) 16.0
10. How many g of KCl would have to be dissolved in $60 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ to give 20% by weight of solution?
a) 15 g
b) 1.5 g
c) 11.5 g
d) 31.5 g
11. What volume of oxygen gas $\left(\mathrm{O}_{2}\right)$ measured at $0^{\circ} \mathrm{C}$ and 1 atm , is needed to burn completely 1 L of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ measured under the same conditions?
a) 6 L
b) 5 L
c) 10 L
d) 7 L
12. The weight of 11.2 litre of any gas at STP represents its:
a) Gram molecular weight
b) Gram equivalent weight
c) Gram atomic weight
d) Vapour density
13. The normality of 10% (weight/volume) acetic acid is:
a) 1 N
b) 10 N
c) 1.7 N
d) 0.83 N
14. The stoichiometry of the following reaction is $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(a q)+2 \mathrm{KI}(a q) \rightarrow 2 \mathrm{~K}_{2} \mathrm{SO}_{4}(a q)+\mathrm{I}_{2}(a q)$
a) $2: 2$
b) $1: 1$
c) $1: 2$
d) $2: 1$
15. 2 mole of ethyl alcohol are present with 6 mole of water. The mole fraction of alcohol is:
a) 0.5
b) 0.75
c) 0.15
d) 0.25
16. What is the $\left[\mathrm{OH}^{-}\right]$in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of $0.10 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?
a) 0.12 M
b) 0.10 M
c) 0.40 M
d) 0.0050 M
17. The pair of compounds which cannot exist in solution is:
a) NaHCO_{3} and NaOH
b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}
c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH
d) NaHCO_{3} and NaCl
18. An oxide of metal has 20% oxygen, the eq. wt. of oxide is:
a) 32
b) 40
c) 48
d) 52
19. What weight of silver chloride will be precipitated when a solution containing 4.77 g of NaCl is added to a solution of 5.77 g of $\mathrm{AgNO}_{3} ?(\mathrm{Na}=23, \mathrm{Cl}=35.5, \mathrm{Ag}=108, N=14$ and $O=16)$
a) 4.37 g
b) 4.87 g
c) 5.97 g
d) 3.87 g
20. Number of molecules in 100 mL of each of $\mathrm{O}_{2}, \mathrm{NH}_{3}$ and CO_{2} at STP are in the order
a) $\mathrm{CO}_{2}<\mathrm{O}_{2}<\mathrm{NH}_{3}$
b) $\mathrm{NH}_{3}<\mathrm{O}_{2}<\mathrm{CO}_{2}$
c) $\mathrm{NH}_{3}=\mathrm{CO}_{2}<\mathrm{O}_{2}$
d) All have same number of molecules
