

CLASS : XIth DATE :

SUBJECT : CHEMISTRY DPP No. : 7

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

1.	One atom of an elemen a) 29.9	t weights 1.8×10^{-22} g. i b) 18	its atomic mass is c) 108.36	d)154		
2.	How many moles of ele a) 6.023×10^{23}	ectrons weigh one kilogr b) $\frac{1}{9.108} \times 10^{31}$	am? c) $\frac{6.023}{9.108} \times 10^{54}$	d) $\frac{1}{9.108 \times 6.023} \times 10^8$		
3.	The number of moles o a) 2	f wa <mark>ter in 488 g BaCl₂ · 2</mark> b) 3	2H ₂ O are: c) 4	d) 5		
4.	The number of molecules in 16 g of methane is:					
	a) 3.0 $\times 10^{23}$	b) 6.02 × 10 ²³	c) $\frac{16}{6.02} \times 10^{23}$	d) $\frac{16}{3.0} \times 10^{23}$		
5.	The percentage of P_2O_5 in diammonium hydrogen phosphate, (NH ₄) ₂ HPO ₄ is					
	a) 23.48	b)46.96	c) 53.78	d)71.00		
6.	Acidified KMnO ₄ oxidises oxalic acid to CO ₂ . What is the volume (in litres) of 10^{-4} M KMnO ₄ required to completely oxidise 0.5 L of 10^{-2} M oxalic acid in acid medium?					
	a) 125	b)1250	c) 200	d)20		
7.	0.003924 have s a) 6	significant figures. b)4	c) 3	d) 7		
8.	The formula mass of Mohr's salt is 392. The iron present in it is oxidised by $KMnO_4$ in acid medium. The equivalent mass of Mohr's salt is a) 392 b) 31.6 c) 278 d) 156					
	aj 592	0)31.0	() 278	u)150		
9.	9. Matter is anything which occupies <i>A</i> and has <i>B</i> Here <i>A</i> and <i>B</i> are					
	a) Density and mass	b) Volume and mass	c) Space and mass	d)None of these		

10.	Which is not a molecula a) $C_6H_{12}O_6$	ar formula? b)Ca(NO ₃) ₂	c) C ₂ H ₄ O ₂	d) N ₂ O		
11.	Insulin contains 3.4% s a) 94.117	ulphur. What will be the b) 1884	e minimum molecular w c) 941.176	eight of insulin? d)976		
12.	Which of the following a) 100 cc of CO_2 at STP	contains maximum num b) 150 cc of N ₂ at STP	uber of molecules? c) 50 cc of SO ₂ at STP	d) 200 cc of NH ₃ at STP		
13.	Weight of a single mole a) 3.0×10^{-23} g	ecule of water is: b) 6.02×10^{23} g	c) 6.02×10^{-23} g	d)None of these		
14.	Air contains $20\%O_2$ by volume. How much volume of air will be required for 100 cc of acetylene?					
	a) 500 cc	b)1064 cc	c) 212.8 cc	d)1250 cc		
15.	1.35 g of pure Ca metal was quantitatively converted into 1.88 g of pure CaO, what is atomic weight of Ca?					
	a) 40.75	b)50	c) 60	d)70		
16.	If 250 mL of a solution contains 2.7 g of H ₂ PO ₄ , the normality of the solution is:					
	a) 4.0	b) 0.33	c) 0.4	d)0.1		
17.	The weights of two ele	men <mark>ts wh</mark> ich combine w	vith one another are in t	he ratio of their:		
	a) At. wt.	b) Mol. wt	c) Eq. wt.	d)None of these		
18.	One litre $N_{2,\frac{7}{8}}$ litre O_2 and 1 litre CO are taken in a mixture under indentical conditions of <i>P</i> and <i>T</i> . The amount of gases present in mixture is given by:					
	a) $w_{N_2} = w_{O_2} > w_{CO}$	b) $w_{N_2} = w_{C0} > w_{O_2}$	c) $w_{N_2} = w_{O_2} = w_{CO}$	d) $w_{\rm CO} > w_{\rm N_2} > w_{\rm O_2}$		
19.	Volume of 0.1 <i>M</i> NaOH needed for the neutralisation of 20 mL of 0.05 <i>M</i> oxalic acid is:					
	a) 10 mL	b) 15mL	c) 20 mL	d)30 mL		
20.). The mole fraction of solute in one molal aqueous solution is:					
	a) 0.009	b) 0.018	c) 0.027	d)0.036		