CLASS : XIth
DATE :
SUBJECT : CHEMISTRY
DPP No. : 6

Topic :-SOME BASIC CONCEPTS OF CHEMISTRY

1. The molarity of 20.0 mass $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution of density $11.14 \mathrm{~g} \mathrm{~cm}^{-3}$ is
a) $2.56 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
b) $1.56 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
c) $1.26 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
d) $2.32 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
2. How many moles of Fe^{2+} ions are formed, when excess of iron is treated with 50 mL of 4.0 M HCl under inert atmosphere? Assume no change in volume:
a) 0.4
b) 0.1
c) 0.2
d) 0.8
3. 100 mL of 0.3 N HCl solution were mixed with 200 mL of $0.6 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution. The final acidic normality is:
a) 0.9 N
b) 0.6 N
c) 0.5 N
d) 0.4 N
4. 45 g of acid of mol. wt. 90 neutralized by 200 mL of 5 N caustic potash. The basicity of the acid is:
a) 1
b) 2
c) 3
d) 4
5. The equivalent weight of KIO_{3} in the reaction,
$2 \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{OH}^{-}+\mathrm{KIO}_{3} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{KI}$ is
a) Mol. wt.
b) Mol. wt./3
c) Mol. wt./6
d) Mol. wt./2
6. The sample with largest number of atoms is
a) 1 g of $\mathrm{O}_{2}(\mathrm{~g})$
b) 1 g of $\mathrm{Ni}(\mathrm{s})$
c) 1 g of $\mathrm{B}(\mathrm{s})$
d) 1 g of $\mathrm{N}_{2}(\mathrm{~g})$
7. The equation,
$2 \mathrm{Al}(s)(3 / 2) O_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(s)$ shows that:
a) 2 mole of Al reacts with ($3 / 2$) mole of O_{2} to produce ($7 / 2$) mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
b) 2 g of Al reacts with (3/2) g of O_{2} to produce one mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
c) 2 g of Al reacts with (3/2)litre of O_{2} to produce 1 mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
d) 2 mole of Al reacts with (3/2) mole of O_{2} to produce 1 mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
8. The number of atoms in 3.2 g of oxygen gas are:
a) 6.02×10^{22}
b) 6.02×10^{23}
c) 12.04×10^{22}
d) 12.04×10^{23}
9. The number of atoms in n moles of gas can be given by:
a) $\begin{aligned} & n \times \\ & \text { Av. no. } \times \text { atomicity }\end{aligned}$
b) $\frac{n \times \text { Av. no. }}{\text { atomicity }}$
c) $\frac{\text { Av. no. } \times \text { atomicity }}{n}$ d) None of these
10. How many moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ would be in 50 g of the substance?
a) 0.083 mol
b) 0.952 mol
c) 0.481 mol
d) 0.140 mol
11. The molecular weight of air will be (the components of air given as $\mathrm{N}_{2}-78 \%, \mathrm{O}_{2}-21 \%, \mathrm{Ar}-09 \%$ and $\mathrm{CO}_{2}-0.1 \%$)
a) 18.64
b) 24.968
c) 28.964
d) 29.864
12. 1.520 g of the hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal is:
a) 1.520
b) 0.995
c) 19.00
d) 9.00
13. The hydrated salt $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$, undergoes 55% loss in weight on heating and becomes anhydrous. The value of n will be:
a) 5
b) 3
c) 7
d) 10
14. When 100 g of ethylene polymerizes to polyethylene according to the equation, $n \mathrm{CH}_{2}=\mathrm{CH}_{2} \longrightarrow+\mathrm{CH}_{3}-\mathrm{CH}_{2}-{ }_{n}$.

The weight of polyethylene produced will be:
a) $\frac{n}{2} g$
b) 100 g
c) $\frac{100}{n}$ g
d) 100 ng
15. Vapour density of a volatile substance is $4\left(\mathrm{CH}_{4}=1\right)$. Its molecular weight would be:
a) 8
b) 2
c) 64
d) 128
16. Dulong and Petit's law is valid only for
a) Metals
b) Non-metals
c) Gaseous elements
d) Solid elements
17. The molarity of pure water is:
a) 55.6
b) 50
c) 100
d) 18
18. A molal solution is one that contains one mole of a solute in:
a) 1000 g of the solvent
b) 1000 mL of the solution
c) One litre of the solvent
d) 22.4 litre of the solution
19. The weight of a substance that displaces 22.4 litre air at NTP is:
a) Mol. wt.
b) At. wt.
c) Eq. wt.
d) All of these
20. The density (in g mL ${ }^{-1}$) of a $3.60 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution having 29% by mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (molar mass 98) will be:
a) 1.45
b) 1.64
c) 1.88
d) 1.22

