

CLASS : XIth DATE : SUBJECT : CHEMISTRY DPP No. : 6

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

- 1. The molarity of 20.0 mass % H_2SO_4 solution of density 11.14 g cm⁻³ is a) 2.56 mol dm^{-3} b) 1.56 mol dm^{-3} c) 1.26 mol dm^{-3} d) 2.32 mol dm^{-3} 2. How many moles of Fe^{2+} ions are formed, when excess of iron is treated with 50 mL of 4.0 M HCl under inert atmosphere? Assume no change in volume: a) 0.4 b)0.1 d)0.8 c) 0.2 3. 100 mL of 0.3 *N* HCl solution were mixed with 200 mL of 0.6 *N* H₂SO₄ solution. The final acidic normality is: a) 0.9 N b)0.6*N* c) 0.5 N d) 0.4 N 4. 45 g of acid of mol. wt. 90 neutralized by 200 mL of 5 N caustic potash. The basicity of the acid is: a) 1 b)2 d)4 c) 3 5. The equivalent weight of KIO_3 in the reaction, $2Cr(OH)_3 + OH^- + KIO_3 \rightarrow 2CrO_4^{2-} + 5H_2O + KI$ is a) Mol. wt. b) Mol. wt./3 c) Mol. wt./6 d) Mol. wt./2 6. The sample with largest number of atoms is a) 1 g of $O_2(g)$ b) 1 g of Ni(s) c) 1 g of B(s)d) 1 g of $N_2(g)$ 7. The equation, $2Al(s)(3/2)O_2(g) \rightarrow Al_2O_3(s)$ shows that: a) 2 mole of Al reacts with (3/2) mole of O_2 to produce (7/2) mole of Al_2O_3 b) 2 g of Al reacts with (3/2) g of O_2 to produce one mole of Al₂O₃ c) 2 g of Al reacts with (3/2) litre of O_2 to produce 1 mole of Al_2O_3 d) 2 mole of Al reacts with (3/2) mole of O_2 to produce 1 mole of Al_2O_3
- 8. The number of atoms in 3.2 g of oxygen gas are: a) 6.02×10^{22} b) 6.02×10^{23} c) 12.04×10^{22} d) 12.04×10^{23}

9.	The number of atoms in n moles of gas can be given by:					
	$a)^{n \times n}$	h) $\frac{n \times \text{Av. no.}}{m}$	$Av. no. \times atomicity$	d)None of these		
	^{a)} Av. no. \times atomicity	atomicity	n n	_		
10						
10.	. How many moles of $Al_2(SO_4)_3$ would be in 50 g of the substance?					
	a) 0.083 mol	b) 0.952 mol	c) 0.481 mol	d) 0.140 mol		
11	The molecular weight of air will be					
11.	The molecular weight of all will be (the components of air given as $N_2 = 78\% \Omega_2 = 21\% Ar = 0.9\%$ and $C\Omega_2 = 0.1\%$)					
	a) 18 64	h) 24 968	c) 28 964	d) 29 864		
	a) 10.0 I	0)21.900	0 20.901	uj27.001		
12.	1.520 g of the hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent weight o metal is:					
	a) 1.520	b) 0.995	c) 19.00	d)9.00		
13.	. The hydrated salt Na ₂ SO ₄ \cdot n H ₂ O, undergoes 55% loss in weight on heating and becomes					
	anhydrous. The value of	of <i>n</i> will be:				
	a) 5	b)3	c) 7	d)10		
14.	4. When 100 g of ethylene polymerizes to polyethylene according to the equation, $nCH_2 = CH_2 \longrightarrow -(CH_3 - CH_2)_n$. The weight of polyethylene produced will be:					
	$\binom{n}{2}$	b) <mark>100 g</mark>	c) $\frac{100}{9}$ g	d) 100 <i>n</i> g		
	528			, ,		
15	Vanour density of a volatile substance is $A(CH) = 1$. Its molecular weight would be					
15.	a) 8	h)?	$_4 = 1$). Its morecular were c) 64	d) 128		
	uj o	0)2		uj 120		
16.	Dulong and Petit's law is valid only for					
	a) Metals	b) Non-metals	c) Gaseous elements	d)Solid elements		
	-	-	-	-		
17.	The molarity of pure water is:					
	a) 55.6	b)50	c) 100	d)18		
18.	A molal solution is one that contains one mole of a solute in:					
	a) 1000 g of the solution					
	c) One litre of the solvent					

- d) 22.4 litre of the solution
- 19. The weight of a substance that displaces 22.4 litre air at NTP is:

a) Mol. wt.	b) At. wt.	c) Eq. wt.	d) All of these
-------------	------------	------------	-----------------

20. The density (in g mL⁻¹) of a 3.60 *M* H₂SO₄ solution having 29% by mass of H₂SO₄ (molar mass 98)will be:
a) 1.45 b) 1.64 c) 1.88 d) 1.22