CLASS : XIth DATE :

DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : CHEMISTRY DPP No. : 6

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

1

2

3

4

5

6

(d) Volume of 100 g solution, $V = \frac{m}{\rho}$ $=\frac{100g}{1.14g\,\mathrm{cm}^{-3}}=87.72\mathrm{cm}^{3}$ Amount of sulphuric acid in 100 g solution, $n = \frac{m}{M} = \frac{20.0g}{98 \ g \ mol^{-1}} = 0.207 \ mol$ Molarity of sulphuric acid, $M = \frac{n}{V} = \frac{0.207 \text{ mol}}{87.72 \times 10^{-3} \text{dm}^3} = 2.32 \text{ mol } \text{dm}^{-3}$ **(b)** Meq. of $Fe^{2+} = Meq.of FeCl_2$ = Meq.ofHCl = $50 \times 4 = 200$; :. Mole of $Fe^{2+} = \frac{200}{2} \times 10^{-3} = 0.1$ (c) Meq. of $HCl = 100 \times 0.3 = 30$ Meq.of $H_2SO_4 = 200 \times 0.6 = 120$ $N_{\text{mixture}} = \frac{30 + 120}{300} = \frac{1}{2}$ *.*.. (b) Meq. of acid = Meq. of caustic potash $\therefore \quad \frac{45}{90/n} \times 1000 = 200 \times 5,$ n = 2:. (c) $2Cr(OH)_3 + 4OH^- + KIO_3 \rightarrow 2CrO_4^{2-} + 5H_2O + KI$ Change in oxidation number of effective element (I) in $KIO_3 = (+5) - (-1) = 6$ Equivalent weight of oxidation = $\frac{\text{mol. wt.}}{6}$ (c)

No. of atoms in 1g of $O_2(g) = 2 \times \frac{1}{32} \times 6.023 \times 10^{23}$ $= 0.38 \times 10^{23}$ No. of atoms in 1g of $Ni(s) = \frac{1}{582} \times 6.023 \times 10^{23}$ $= 0.10 \times 10^{23}$ No. of atoms in 1g of $B(s) = \frac{1}{10.8} \times 6.023 \times 10^{23}$ $= 0.58 \times 10^{23}$ No. of atoms in 1g of $N_2(g) = 2 \times \frac{1}{28} \times 6.023 \times 10^{23}$ $= 0.43 \times 10^{23}$ Alternative: Smaller the atomic mass, larger will be the no. of atoms in sample. (d) Follow stoichiometry of reaction. (c) Mole of $O_2 = \frac{3.2}{32} = \frac{1}{10}$: atoms of $0 = 2N \times \frac{1}{10} = 12.04 \times 10^{22}$ (a) No. of molecules in n mole = $n \times Av$. no; Also no. of atom in 1 molecule = atomicity. 10 (d) mass Moles = <u>molecular mass</u> mass of $Al_2(SO_4)_3 = 50g$ Given, Molecular mass of $Al_2(SO_4)_3 = 342 \text{ g}$ Moles of Al₂(SO₄)₃ = $\frac{50}{342}$ = 0.14 mol :. 11 (c) In air Molecular weight of $N_2 = \frac{28 \times 78}{100} = 21.84$ Molecular weight of $O_2 = \frac{32 \times 21}{100} = 6.72$ Molecular weight of $Ar = \frac{18 \times 0.9}{100} = 0.162$ Molecular weight of $CO_2 = \frac{44 \times 0.1}{100} = 0.044$ So, molecular weight of air = 21.84 + 6.72 + 0.162 + 0.044= 28.76612 (d) Meq. of oxide = Meq. of hydroxide; Thus, $\frac{0.995}{E+8} = \frac{1.520}{E+17}$ $\therefore E = 9$ 13 (d) Per cent loss of H₂O in one mole of $Na_2SO_4 \cdot nH_2O = \frac{18n \times 100}{(142 + 18n)} = 55$:. n = 1015 (c)

7

8

9

VD of substance = 4 (when VD of $CH_4 = 1$) ∴VD of substance = 8 × 4 (when VD of $CH_4 = 8$) ∴mol. wt. of substance = 32 × 2 = 64

16

(d)

(a)

According to Dulong and Petit's law At. mass of element \times specific heat (in cal/g)=6.4(app.) This law is applicable only to solid elements excepts Be, B, C and Si.

17

 $M_{\rm H_20} = \frac{\frac{1000 \times d}{18}}{1} = 55.6 \times d$ $\therefore \quad d = 1 \quad \therefore M = 55.6$

18 **(a)**

Follow definition of molality.

19 **(a)**

1 mole (g mol. wt.) of a substance displaces 22.4 litre air at NTP.

20

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	В	C	В	С	C	D	С	A	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	D	D	В	С	D	A	А	A	D

