CLASS : XIth
DATE :

Solutions

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

1

2

3
(d)

Volume of 100 g solution, $V=\frac{m}{\rho}$
$=\frac{100 \mathrm{~g}}{1.14 \mathrm{~g} \mathrm{~cm}^{-3}}=87.72 \mathrm{~cm}^{3}$
Amount of sulphuric acid in 100 g solution,
$n=\frac{m}{M}=\frac{20.0 \mathrm{~g}}{98 \mathrm{~g} \mathrm{~mol}^{-1}}=0.207 \mathrm{~mol}$
Molarity of sulphuric acid,
$\mathrm{M}=\frac{\mathrm{n}}{\mathrm{V}}=\frac{0.207 \mathrm{~mol}}{87.72 \times 10^{-3} \mathrm{dm}^{3}}=2.32 \mathrm{~mol} \mathrm{dm}^{-3}$
(b)

Meq. of $\mathrm{Fe}^{2+}=$ Meq.of FeCl_{2}

$$
=\text { Meq.ofHCl }=50 \times 4=200 ;
$$

\therefore Mole of $\mathrm{Fe}^{2+}=\frac{200}{2} \times 10^{-3}=0.1$
(c)

Meq. of $\mathrm{HCl}=100 \times 0.3=30$
Meq.of $\mathrm{H}_{2} \mathrm{SO}_{4}=200 \times 0.6=120$
$\therefore \quad N_{\text {mixture }}=\frac{30+120}{300}=\frac{1}{2}$
(b)

Meq. of acid $=$ Meq. of caustic potash

$$
\begin{aligned}
& \therefore & \frac{45}{90 / n} \times 1000 & =200 \times 5, \\
& \therefore & n & =2
\end{aligned}
$$

(c)
$2 \mathrm{Cr}(\mathrm{OH})_{3}+4 \mathrm{OH}^{-}+\mathrm{KIO}_{3} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{KI}$
Change in oxidation number of effective element (I) in
$\mathrm{KIO}_{3}=(+5)-(-1)=6$
Equivalent weight of oxidation $=\frac{\text { mol. } \mathrm{wt}}{6}$
(c)

No. of atoms in 1 g of $O_{2}(g)=2 \times \frac{1}{32} \times 6.023 \times 10^{23}$
$=0.38 \times 10^{23}$
No. of atoms in 1 g of $\mathrm{Ni}(s)=\frac{1}{58.2} \times 6.023 \times 10^{23}$
$=0.10 \times 10^{23}$
No. of atoms in 1 g of $B(s)=\frac{1}{10.8} \times 6.023 \times 10^{23}$
$=0.58 \times 10^{23}$
No. of atoms in 1 g of $\mathrm{N}_{2}(\mathrm{~g})=2 \times \frac{1}{28} \times 6.023 \times 10^{23}$
$=0.43 \times 10^{23}$
Alternative: Smaller the atomic mass, larger will be the no. of atoms in sample.
(d)

Follow stoichiometry of reaction.
(c)

Mole of $\mathrm{O}_{2}=\frac{3.2}{32}=\frac{1}{10}$
\therefore atoms of $\mathrm{O}=2 \mathrm{~N} \times \frac{1}{10}=12.04 \times 10^{22}$
(a)

No. of molecules in n mole $=n \times$ Av. no;Also no. of atom in 1 molecule $=$ atomicity.
(d)

Moles $=\frac{\text { mass }}{\text { molecular mass }}$
Given, \quad mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=50 \mathrm{~g}$
Molecular mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=342 \mathrm{~g}$
$\therefore \quad$ Moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=\frac{50}{342}=0.14 \mathrm{~mol}$
(c)

In air
Molecular weight of $N_{2}=\frac{28 \times 78}{100}=21.84$
Molecular weight of $O_{2}=\frac{32 \times 21}{100}=6.72$
Molecular weight of $\mathrm{Ar}=\frac{18 \times 0.9}{100}=0.162$
Molecular weight of $\mathrm{CO}_{2}=\frac{44 \times 0.1}{100}=0.044$
So, molecular weight of air $=21.84+6.72+0.162+0.044$
$=28.766$
(d)

Meq. of oxide $=$ Meq. of hydroxide;
Thus, $\quad \frac{0.995}{E+8}=\frac{1.520}{E+17} \quad \therefore E=9$
(d)

Per cent loss of $\mathrm{H}_{2} \mathrm{O}$ in one mole of

$$
\begin{array}{cc}
& \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}=\frac{18 n \times 100}{(142+18 n)}=55 \\
\therefore & n=10
\end{array}
$$

(c)

VD of substance $=4\left(\right.$ when VD of $\left.\mathrm{CH}_{4}=1\right)$
\therefore VD of substance $=8 \times 4\left(\right.$ when VD of $\left.\mathrm{CH}_{4}=8\right)$ \therefore mol. wt. of substance $=32 \times 2=64$

20
(d)

According to Dulong and Petit's law
At. mass of element \times specific heat (in cal/g) $=6.4$ (app.)
This law is applicable only to solid elements excepts $\mathrm{Be}, \mathrm{B}, \mathrm{C}$ and Si .
(a)
$M_{\mathrm{H}_{2} \mathrm{O}}=\frac{\frac{1000 \times d}{18}}{1}=55.6 \times d$
$\therefore \quad d=1 \quad \therefore M=55.6$
(a)

Follow definition of molality.
(a)

1 mole (g mol. wt.) of a substance displaces 22.4 litre air at NTP.
(d)
$M=\frac{\mathrm{wt} . \times \text { density } \times 1000}{\mathrm{~m} . \mathrm{wt} . \times \text { wt.of solution }}$
$3.6=\frac{29 \times d \times 1000}{98 \times 100}$ $d=1.22 \mathrm{~g} / \mathrm{mL}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	B	C	B	C	C	D	C	A	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	D	D	B	C	D	A	A	A	D	

