

CLASS : XIth DATE :

SUBJECT : CHEMISTRY DPP No. : 5

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

 Mixing up of equal volumes of 0.1 <i>M</i> NaOH and 0.1 <i>M</i> CH₃COOH yields a solution which is: a) Basic b) Acidic c) Neutral d) None of these If 6.3 g of NaHCO₃ are added to 15.0 g CH₃COOH solution, the residue is found to weight 18.0 g what is the mass of CO₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g S0 mL of an aqueous solution of glucose contains 6.02 × 10²² molecules. The concentration solution is: a) 0.1 <i>M</i> b) 1.0 <i>M</i> c) 0.2 <i>M</i> d) 2.0 <i>M</i> Molar concentration of a solution in water is: a) Always equal to normality of solution b) More than molality of the solution c) Equal to molality of the solution c) Equal to molality of the solution d) Less than the molality of the solution d) About 0.1 <i>N</i> a) 1 molar b) 0.1 molar c) Decinormal d) About 0.1 <i>N</i> d) About 0.1 <i>N</i> How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCI? a) 0.333 b) 0.011 c) 0.029 d) 0.044 The nature of mixture obtained mixing 50 mL of 0.1 <i>M</i> H₂SO₄ and 50 mL of 0.1 <i>M</i> NaOH is: a) Acidic b) Basic c) Neutral d) amphoteric 	1.	Which has the maxim a) 6 g C	um number of atoms? b) 1 g H ₂	c) 12 g Mg	d) 30 g Ca		
 3. If 6.3 g of NaHCO₃ are added to 15.0 g CH₃COOH solution, the residue is found to weight 18.0 g what is the mass of CO₂ released in the reaction? a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 4. 50 mL of an aqueous solution of glucose contains 6.02 × 10²² molecules. The concentration solution is: a) 0.1 M b) 1.0 M c) 0.2 M d) 2.0 M 5. Molar concentration of a solution in water is: a) Always equal to normality of solution b) More than molality of the solution c) Equal to molality of the solution d) Less than the molality of the solution d) About 0.1 N 6. 1 kg of NaOH solution contains 4 g of NaOH. The approximate concentration of the solution is: a) 1 molar b) 0.1 molar c) Decinormal d) About 0.1 N 7. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCI? a) 0.333 b) 0.011 c) 0.029 d) 0.044 8. The nature of mixture obtained mixing 50 mL of 0.1 M H₂SO₄ and 50 mL of 0.1 M NaOH is: a) Acidic b) Basic c) Neutral d) amphoteric 	2.	Mixing up of equal vol a) Basic	lumes of 0.1 <i>M</i> NaOH and b) Acidic	1 0.1 <i>M</i> CH ₃ COOH yields c) Neutral	a solution which is: d)None of these		
 a) 4.5 g b) 3.3 g c) 2.6 g d) 2.8 g 4. 50 mL of an aqueous solution of glucose contains 6.02 × 10 ²² molecules. The concentration solution is: a) 0.1 M b) 1.0 M c) 0.2 M d) 2.0 M 5. Molar concentration of a solution in water is: a) Always equal to normality of solution b) More than molality of the solution c) Equal to molality of the solution d) Less than the molality of the solution d) Less than the molality of the solution b) 0.1 molar c) Decinormal d) About 0.1 N 7. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl? a) 0.333 b) 0.011 c) 0.029 d) 0.044 8. The nature of mixture obtained mixing 50 mL of 0.1 M H ₂ SO ₄ and 50 mL of 0.1 M NaOH is: a) Acidic b) Basic c) Neutral 	3.	If 6.3 g of NaHCO ₃ are added to 15.0 g CH ₃ COOH solution, the residue is found to weight 18.0 g. what is the mass of CO_2 released in the reaction?					
 4. 50 mL of an aqueous solution of glucose contains 6.02 × 10²² molecules. The concentration solution is: a) 0.1 M b) 1.0 M c) 0.2 M d) 2.0 M 5. Molar concentration of a solution in water is: a) Always equal to normality of solution b) More than molality of the solution c) Equal to molality of the solution d) Less than the molality of the solution d) Less than the molality of the solution equal to molality of the solution c) Decinormal d) About 0.1 N 6. 1 kg of NaOH solution contains 4 g of NaOH. The approximate concentration of the solution is: a) 1 molar b) 0.1 molar c) Decinormal d) About 0.1 N 7. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCI? a) 0.333 b) 0.011 c) 0.029 d) 0.044 8. The nature of mixture obtained mixing 50 mL of 0.1 M H₂SO₄ and 50 mL of 0.1 M NaOH is: a) Acidic b) Basic c) Neutral d) amphoteric 		a) 4.5 g	b) 3.3 g	c) 2.6 g	d) 2.8 g		
 5. Molar concentration of a solution in water is: a) Always equal to normality of solution b) More than molality of the solution c) Equal to molality of the solution d) Less than the molality of the solution 6. 1 kg of NaOH solution contains 4 g of NaOH. The approximate concentration of the solution is: a) 1 molar b) 0.1 molar c) Decinormal d) About 0.1 N 7. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl? a) 0.333 b) 0.011 c) 0.029 d) 0.044 8. The nature of mixture obtained mixing 50 mL of 0.1 M H₂SO₄ and 50 mL of 0.1 M NaOH is: a) Acidic b) Basic c) Neutral d) amphoteric 	4.	50 mL of an aqueous solution is: a) 0.1 <i>M</i>	solution of glucose cont b) 1.0 <i>M</i>	ains 6.02 × 10 ²² molecu c) 0.2 <i>M</i>	ules. The concentration of d) 2.0 <i>M</i>		
 6. 1 kg of NaOH solution contains 4 g of NaOH. The approximate concentration of the solution is: a) 1 molar b) 0.1 molar c) Decinormal d) About 0.1 N 7. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl? a) 0.333 b) 0.011 c) 0.029 d) 0.044 8. The nature of mixture obtained mixing 50 mL of 0.1 M H₂SO₄ and 50 mL of 0.1 M NaOH is: a) Acidic b) Basic c) Neutral d) amphoteric 	5.	Molar concentration of a solution in water is: a) Always equal to normality of solution b) More than molality of the solution c) Equal to molality of the solution d) Less than the molality of the solution					
 7. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl? a) 0.333 b) 0.011 c) 0.029 d) 0.044 8. The nature of mixture obtained mixing 50 mL of 0.1 M H₂SO₄ and 50 mL of 0.1 M NaOH is: a) Acidic b) Basic c) Neutral d) amphoteric 	6.	1 kg of NaOH solution a) 1 molar	contains 4 g of NaOH. Tl b) 0.1 molar	ne approximate concent c) Decinormal	ration of the solution is: d)About 0.1 <i>N</i>		
 8. The nature of mixture obtained mixing 50 mL of 0.1 <i>M</i> H₂SO₄ and 50 mL of 0.1 <i>M</i> NaOH is: a) Acidic b) Basic c) Neutral d) amphoteric 	7.	How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl? a) 0.333 b) 0.011 c) 0.029 d) 0.044					
a) Acidic b) Basic c) Neutral d) amphoteric	8.	The nature of mixture obtained mixing 50 mL of $0.1 M$ H ₂ SO ₄ and 50 mL of $0.1 M$ NaOH is:					
9. Number of electrons in 1.8 mL of H_2O is :	9.						

10	a) 6.02×10^{23}	b) 3.011×10^{23}	c) 0.6022×10^{23}	d) 60.22×10^{23}			
10.	If a compound contains two oxygen atoms, four carbon atoms and number of hydrogen atom is						
	double of carbon atoms	s, the vapour density of 1	IT IS:	1) 70			
	a) 88	D)44	cj 132	d)/2			
11.	Molecular weight of oxalic acid is 126. The weight of oxalic acid required to neutralise 1000 mL of normal solution of NaOH is:						
	a) 126 g	b)63 g	c) 6.3 g	d) 12.6 g			
	, 0	, 0	, 0	, .			
12.	The number of hydrogen atoms present in 25.6 g of sucrose($C_{12}H_{22}O_{11}$) which has a molar mass of 342.3 g is						
	a) 22×10^{23}	b) 9.91×10^{23}	c) 11×10^{23}	d) 44 \times 10 ²³ H atoms			
13.	3. Molarity of liquid HCl with density equal to 1.17 g/mL is:						
	a) 36.5	b) 18.25	c) 32.05	d)4.65			
	2	,	,				
14.	. If 20 mL of 0.4 <i>N</i> NaOH solution completely neutralizes 40 mL of a dibasic acid, the molarity						
	the acid solution is:						
	a) 0.1 <i>M</i>	b) 0 <mark>.2 <i>M</i></mark>	c) 0.3 <i>M</i>	d) 0.4 <i>M</i>			
15.	Dissolving 120 g of ure	ea (<mark>mol.w</mark> t.60) i <mark>n 100</mark> 0	g <mark>of wa</mark> ter gave a soluti	on of density 1.15 g/mL.			
	The molarity of the solu	ution is:					
	a) 1.78 <i>M</i>	b) 2.00 <i>M</i>	c) 2.05 <i>M</i>	d) 2.22 <i>M</i>			
16.	Equivalent weight of N	IH ₃ a <mark>s a b</mark> ase is:					
	a) 17	b)17/3	c) 1.7	d)17/2			
17.	$KMnO_4$ reacts with oxalic acid according to the equation						
	$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$ Here, 20 mL of 0.1 M KMnO ₄ is equivalent to						
a) 20 mL of 0.5 M H ₂ C ₂ O.		D ₄ b) 50 mL of 0.1 M		$H_2C_2O_4$			
	c) 50 mL of 0.1 M H ₂ C ₂ O ₄		d) 20 mL of 0.1 M H ₂ C ₂ O ₄				
18.	To prepare a standard solution of a substance, we use:						
	a) A pipette	b) A burette	c) Measuring flask	d) Measuring cylinder			
19.	There are two isotopes of an element with atomic mass <i>z</i> . Heavier one has atomic mass $z + 2$						
	and lighter one has z –	1, the abundance of ligh	ter one is				
	a) 66.6%	b)69.7%	c) 6.67%	d)33.3%			
20.	3 g of an oxide of a metal is converted to chloride completely and it yielded 5 g of chloride. The						
	equivalent weight of the	e metal is					
	a) 33.25	b) 3.325	c) 12	d)20			