CLASS : XIth
DATE :
SUBJECT : CHEMISTRY DPP No. : 5

Topic :-SOME BASIC CONCEPTS OF CHEMISTRY

1. Which has the maximum number of atoms?
a) 6 gC
b) $1 \mathrm{~g} \mathrm{H}_{2}$
c) 12 g Mg
d) 30 g Ca
2. Mixing up of equal volumes of 0.1 M NaOH and $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ yields a solution which is:
a) Basic
b) Acidic
c) Neutral
d) None of these
3. If 6.3 g of NaHCO_{3} are added to $15.0 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH}$ solution, the residue is found to weight 18.0 g . what is the mass of CO_{2} released in the reaction?
a) 4.5 g
b) 3.3 g
c) 2.6 g
d) 2.8 g
4. 50 mL of an aqueous solution of glucose contains 6.02×10^{22} molecules. The concentration of solution is:
a) 0.1 M
b) 1.0 M
c) 0.2 M
d) 2.0 M
5. Molar concentration of a solution in water is:
a) Always equal to normality of solution
b) More than molality of the solution
c) Equal to molality of the solution
d) Less than the molality of the solution
6. 1 kg of NaOH solution contains 4 g of NaOH . The approximate concentration of the solution is:
a) 1 molar
b) 0.1 molar
c) Decinormal
d) About 0.1 N
7. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl ?
a) 0.333
b) 0.011
c) 0.029
d) 0.044
8. The nature of mixture obtained mixing 50 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and 50 mL of 0.1 M NaOH is:
a) Acidic
b) Basic
c) Neutral
d) amphoteric
9. Number of electrons in 1.8 mL of $\mathrm{H}_{2} \mathrm{O}$ is :
a) 6.02×10^{23}
b) 3.011×10^{23}
c) 0.6022×10^{23}
d) 60.22×10^{23}
10. If a compound contains two oxygen atoms, four carbon atoms and number of hydrogen atom is double of carbon atoms, the vapour density of it is:
a) 88
b) 44
c) 132
d) 72
11. Molecular weight of oxalic acid is 126 . The weight of oxalic acid required to neutralise 1000 mL of normal solution of NaOH is:
a) 126 g
b) 63 g
c) 6.3 g
d) 12.6 g
12. The number of hydrogen atoms present in 25.6 g of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ which has a molar mass of 342.3 g is
a) 22×10^{23}
b) 9.91×10^{23}
c) 11×10^{23}
d) $44 \times 10^{23} \mathrm{H}$ atoms
13. Molarity of liquid HCl with density equal to $1.17 \mathrm{~g} / \mathrm{mL}$ is:
a) 36.5
b) 18.25
c) 32.05
d) 4.65
14. If 20 mL of 0.4 NNaOH solution completely neutralizes 40 mL of a dibasic acid, the molarity of the acid solution is:
a) 0.1 M
b) 0.2 M
c) 0.3 M
d) 0.4 M
15. Dissolving 120 g of urea (mol.wt.60) in 1000 g of water gave a solution of density $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is:
a) 1.78 M
b) 2.00 M
c) 2.05 M
d) 2.22 M
16. Equivalent weight of NH_{3} as a base is:
a) 17
b) $17 / 3$
c) 1.7
d) $17 / 2$
17. KMnO_{4} reacts with oxalic acid according to the equation $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ Here, 20 mL of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ is equivalent to
a) 20 mL of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
b) 50 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
c) 50 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
d) 20 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
18. To prepare a standard solution of a substance, we use:
a) A pipette
b) A burette
c) Measuring flask
d) Measuring cylinder
19. There are two isotopes of an element with atomic massz. Heavier one has atomic mass $z+2$ and lighter one has $z-1$, the abundance of lighter one is
a) 66.6%
b) 69.7%
c) 6.67%
d) 33.3%
20. 3 g of an oxide of a metal is converted to chloride completely and it yielded 5 g of chloride. The equivalent weight of the metal is
a) 33.25
b) 3.325
c) 12
d) 20
