CLASS : XIth DATE :

Solutions

AILY PRACTICE PROBLEM

SUBJECT : CHEMISTRY DPP No. : 5

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

1 (d) Mole of Ca = $\frac{30}{40}$ (the largest value) 2 (a) Meq. of NaOH = 0.1 VMeq. of $CH_3COOH = 0.1 V$ \therefore Meq. of CH₃COONa formed = 0.1 V The solution will be alkaline due to hydrolysis of CH₃COONa. 3 (b) According to law of conservation of mass, Mass of reactants = mass of products $\therefore 6.3 + 15.0 = 18.0 + x$ Or x = 21.3 - 18.0 = 3.3 g(d) 4 Mole of glucose = $\frac{6.02 \times 10^{22}}{6.02 \times 10^{23}} = 0.1$ $M_{\rm glucose} = \frac{0.1 \times 1000}{50} = 2$ *.*.. 5 (b) M > m provided d solvent ≤ 1 6 **(b)** $m = \frac{1}{40 \times 0.996} = 0.1$ 7 (c) $2HCl \rightarrow PbCl_2 + H_2O$ PbO + Eq. at $t = 0 \frac{6.5 \times 2}{224}$ 3.2 0 0 36.2 =0.058 0.088 0 0 Eq. after 0.030 0.058 0.058 0 reaction \therefore Mole of PbCl₂ formed $=\frac{0.058}{2}=0.029$

8 (a) Meq. of $H_2SO_4 = 50 \times 0.1 \times 2 = 10$; Meq. of NaOH = $50 \times 0.1 = 5$ \therefore Meq. of H₂SO₄ left = 10-5; Solution is acidic. 9 (a) $18 \text{ mL H}_20 \text{ or } 18 \text{ g H}_20 \text{ has } 10N \text{ electrons.}$ 10 (b) The compound is $C_4H_8O_2$; Mol. wt. = 88 \therefore Vapour density = 44 11 **(b)** Meq. of oxalic acid = Meq. of NaOH: $::\frac{w}{126/2} \times 1000 = 1000 \times 1;$ $w = 63 \, g$ *.*:. 12 **(b)** Mole of sucrose = $\frac{\text{mass of sucrose (in gram)}}{\text{molecular weight of sucrose}}$ $=\frac{25.6}{342.3}=0.0747882$ Formula of sucrose $=C_{12}H_{22}O_{11}$ Number of H atoms in 1 mole of sucrose

 $=22\times 6.023\times 10^{23}$

Number of H atoms in 0.0747882 mole of sucrose

 $= 22 \times 6.023 \times 10^{23} \times 0.074788$

 $= 9.9 \times 10^{23}$

13

(c)

(a)

Liquid HCl is 100% pure $\therefore M = \frac{100 \times 1.17 \times 1000}{36.5 \times 100} = 32.05$

15

Meq. of NaOH=Meq. of acid; $20 \times 0.4 = 40 \times N;$ $\therefore \qquad N = 0.2 \quad \text{or} \quad M = 0.1$ (c) Mass of solute = 120 g Mass of water = 1000 g

Mass of solution = 1120 g

 \therefore Volume of solution $\left(\frac{m}{d}\right) = \frac{1120}{1.15}$ mL Milli mole $= M \times V_{\text{in mL}}$ $\frac{120}{60} \times 1000 = M \times \frac{1120}{1.15}$ M = 2.05*.*.. 16 (a) Eq. wt. = $\frac{\text{mol. wt.}}{\text{acidity}}$ NH₃ is monoacidic base. 17 **(b)** $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$ 20 mL of 0.1 M KMnO₄ = $20 \times 0.1 = 2m$ mol \therefore 2 mmol of KMnO₄ ≡ 5 mmol of C₂O₄²⁻ 50 mL of 0.1 M $H_2C_2O_4 = 50 \times 0.1 = 5$ mmol Hence, 20 mL of 0.1 M KMnO₄ $\equiv 50 \text{ mL of } 0.1 \text{ M H}_2\text{C}_2\text{O}_4$ 18 (c) Solutions of known strength are prepared by dissolving solute in solvent in a measuring flask. 19 (a) Let the percent abundance of lighter isotope is x. : Atomic mass, $z = \frac{x(z-1) + (100 - x)(z+2)}{z + 100 - x}$ 3x = 200 or x = 66.6%20 (a) Wt.of metal oxide Wt.of metal chloride Eq.wt.of metal + Eq.wt.of oxide $= \frac{-4}{\text{Eq.wt.of metal} + \text{Eq.wt.of chloride}}$ $\frac{3}{5} = \frac{E+8}{E+35.5}$ E = 33.25

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	Α	В	D	В	В	C	А	Α	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	В	C	A	C	A	В	С	A	A

