CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY DPP No. : 4

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

1
(d)

Silica	Water	Clay	Mineral
45	12	43	Initial \%
a	8	$(92-a)$	$\%$ after heating

The \% ratio of silica and clay remains constant on heating

| | | i.e., | $\frac{45}{43}$ |
| ---: | :--- | ---: | :--- |$=\frac{a}{92-a}$

(b)
N atom $=1 \mathrm{~g}$ atom
(a)

Meq. of conc. $\mathrm{HCl}=$ Meq. of dil. HCl

$$
\begin{aligned}
& & 10 \times V_{1} & =100 \times 1 \\
\therefore & & V_{1} & =10 \mathrm{~mL}
\end{aligned}
$$

Thus, 10 mL of conc. HCl should be added 90 mL to make at 100 mL of desired normality.
(a)
$\mathrm{CaF}_{2}=146.4 \mathrm{~g}$
Molecular weight of $\mathrm{CaF}_{2}=78.08 \mathrm{~g} / \mathrm{mol}$

$$
\begin{aligned}
\text { Moles of } \mathrm{CaF}_{2} & =\frac{\text { weight }}{\text { molecular weight }} \\
& =\frac{146.4}{78.08}=1.875 \mathrm{~mol}
\end{aligned}
$$

Number of formula units of
CaF_{2} in 146.4 g of CaF_{2}
$=$ No.of moles $\times 6.022 \times 10^{23}$
$=1.875 \times 6.022 \times 10^{23}$
$=11.29 \times 10^{23}$

$$
=1.129 \times 10^{24} \mathrm{CaF}_{2}
$$

(a)
$\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$28 \mathrm{~g} \quad 96 \mathrm{~g}$
\because The weight of oxygen required for complete combustion of 28 g ethylene $=96 \mathrm{~g}$.
\therefore Weight of oxygen required for combustion of 2.8 kg ethylene
$=\frac{96 \times 2.8 \times 1000}{28 \times 1000} \mathrm{~kg}=9.6 \mathrm{~kg}$
(b)
$2 \mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{NaH}_{2} \mathrm{PO}_{4}+2\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO} \rightarrow \mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}+4 \mathrm{NH}_{3}+2 \mathrm{CO}_{2}$
Hence, the stoichoimetric ratio of sodium dihydrogen orthophosphate and sodium hydrogen orthophosphate is $2: 1$ or $3: 1.5$
(b)
$44 \mathrm{~g} \mathrm{CO}_{2}=\mathrm{N}$ molecules,
$\therefore 4.4 \mathrm{~g} \mathrm{CO}_{2}=N / 10$ molecules,
22.4 litre H_{2} at $\mathrm{STP}=N$ molecules,
$\therefore 2.24$ litre H_{2} at $\mathrm{STP}=N / 10$ molecules,
Thus, total molecules $=\frac{N}{10}+\frac{N}{10}=\frac{N}{5}$.
(c)

Molecular mass of $\mathrm{CO}_{2}=12+32=44$
44 g of CO_{2} has $=6.023 \times 10^{23}$ molecule
0.2 g of CO_{2} has $=\frac{6.023 \times 10^{23}}{44} \times 0.2$
$=0.0273 \times 10^{23}$
If 10^{21} molecules are removed then number of molecules
$=1.73 \times 10^{21}$
$\because 6.023 \times 10^{23}$ molecules $=1 \mathrm{~mol}$
$\therefore 1.73 \times 10^{21}$ molecules $=\frac{1}{6.023 \times 10^{23}} \times 1.73 \times 10^{21}$
$=0.0028 \mathrm{~mol}$
(a)

24 g carbon has 2 N atoms. Rest all have I mole atoms.
$\mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}$ has 1 mole of copper and 9 moles of oxygen atoms,
$63.5 \mathrm{~g} \mathrm{Cu}=9 \times 16 \mathrm{~g}$ of oxygen
8.64 g of oxygen $=\frac{63.5 \times 8.64}{9 \times 16}$
$=3.81 \mathrm{~g}$
(c)

Meq.of $\mathrm{H}_{3} \mathrm{PO}_{3}=$ Meq.of KOH

$$
20 \times 0.1 \times 2=0.1 \times 1 \times V
$$

$\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right.$ is dibasic, KOH is monobasic)
$\therefore \quad V=40 \mathrm{~mL}$
(a)

Given mass of $\mathrm{O}_{2}=2 \mathrm{~g}$ at $\mathrm{O}^{\circ} \mathrm{C}$ and 760 mm Hg

$$
32 \mathrm{~g} \text { of } \mathrm{O}_{2}=22.4 \mathrm{~L} \text { at STP }
$$

$$
\therefore \quad 2 \mathrm{~g} \mathrm{of}_{2}=\frac{22.4}{32} \times 2=1.4 \mathrm{~L}
$$

(a)

Ratio of atoms
$C: H: N: O:: \frac{20.0}{12}: \frac{6.66}{1}: \frac{47.33}{14}: \frac{26.01}{16}$
= 1.67:6.66:3.38:1.63
$=1: 4: 2: 1$
Empirical formula $=\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
Molar empirical formula mass $=60 \mathrm{~g}$
Molecular formula $=\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
(b)

Molarity $=\frac{\text { moles of solute }}{\text { volume of solution }} ; V_{\text {solution }}>1$ litre water .
$N=\frac{4 \times 1000}{40 \times 100}=1.0$
(c)

Mohr's salt is $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
Only oxidizable part is Fe^{2+}.
$\left[\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+e^{-}\right] \times 6$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 e^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
$6 \mathrm{Fe}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 6 \mathrm{Fe}^{3+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
Millimoles of $\mathrm{Fe}^{2+}=750 \times 0.6=450$
Moles of $\mathrm{Fe}^{2+}=\frac{450}{1000}=0.450 \mathrm{~mol}$
$6 \mathrm{~mol} \mathrm{Fe}{ }^{2+}=1 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
$\therefore 0.450 \mathrm{~mol} \mathrm{Fe}^{2+}=\frac{0.450}{6}$
$=0.075 \mathrm{~mol} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
$=0.075 \times 294 \mathrm{~g}$
$=22.05 \mathrm{~g}$
(d)
$3 \mathrm{BaCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl}$
See mole ratio from stoichiometry.
$\mathrm{BaCl}_{2}: \mathrm{Na}_{3} \mathrm{PO}_{4}: \mathrm{Ba}_{3}\left(\mathrm{PO}_{3}\right)_{2}: \mathrm{NaCl}:: 3: 2: 1: 6$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	B	A	A	A	D	B	C	A	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	C	A	A	B	C	D	B	C	D	

