

CLASS: XIth DATE:

Solutions

SUBJECT: CHEMISTRY

DPP No. : 3

Topic:-SOME BASIC CONCEPTS OF CHEMISTRY

1 **(b)**

See mole ratio *A* :*B* :*C*::1 :2 :1

2 **(d)**

1 mg
$$C_4H_{10} = \frac{14N}{58} \times 10^{-3}$$
 atoms,

1 mg N₂ =
$$\frac{2N \times 10^{-3}}{28}$$
 atoms,

$$1 \text{ mg Na} = \frac{N \times 10^{-3}}{23} \text{ atoms,}$$

$$1 \text{ mL} = 1 \text{ g H}_2 0 = \frac{3N}{18} \text{ atoms},$$

(: M g of a substance = N molecules = $a \times N$ atoms; where a is number of atoms in one molecule).

3 **(c)**

An aromatic hydrocarbon (empirical formula C₅H₄)

+ H₂SO₄→ monosulphonic acid

∵ 0.104 g of monosulphonic acid required 10 mL

of $\frac{N}{20}\,\text{NaOH}$ for complete neutralisation

$$\therefore \frac{0.104}{n(5 \times 12 + 4 \times 1)} = \frac{1}{20} \times 10 \times 10^{-3}$$
$$n = \frac{104}{32} = 3.25 \approx 3$$

The molecular formula of hydrocarbon will be $C_{15}H_{12}$.

4 (a)

In 12 g carbon, mass of C-14 isotope = $12 \times \frac{2}{100} = 0.24g$

: Number of C-14 atoms in 12 g of
$$C = \frac{0.24}{14} \times 6.02 \times 10^{23}$$

= 1.032 × 10²²

5 **(b)**

To prepare 20 g zinc sulphate crystals, zinc required

$$=\frac{22.65}{100}\times20$$

$$= 4.53g$$

6 (b)

Number of gram molecules = $\frac{6.02 \times 10^{25}}{6.02 \times 10^{23}} = 100$

7 (a)

Ferrous is Fe²⁺

8

$$M = \frac{5}{34 \times 100/1000} = 1.47$$

9 (b)

 4.6×10^{22} atoms weight = 13.8 g

Hence,
$$6.02 \times 10^{23}$$
 atoms will weigh
$$= \frac{13.8 \times 6.02 \times 10^{23}}{4.6 \times 10^{22}} = 108.6 \text{ g (molar mass)}$$

10 (c)

Eq. of HCl = Eq. of $CaCO_3$

Thus,
$$\frac{w}{36.5} = \frac{100}{50}$$
;

$$\therefore$$
 $w = 73 \text{ g HCl};$

50 g HCl is present in 100 g HCl solution and thus, volume of solution required for,

73 g HCl =
$$\frac{73 \times 100}{50}$$
 = 146g.

12

The law of constant composition — According to this law, "A chemical compound is always found to be made up of the same elements combined together in the same proportions by weights".

0

This law is same as law of definite proportions.

13 (d)

Atomic weight of the element

$$X = 6.643 \times 10^{-23} \times N_A = 40$$

No. of moles of
$$X = \frac{20 \times 1000}{40} = 500$$

14

Limiting reagent is one which is completely consumed in reaction.

15

ppm = wt. of solute in 10^6 g H_2O

10³ g H₂O contains 10 g CaCO₃

$$\therefore 10^6 \text{ g H}_2\text{O contains} = \frac{10 \times 10^6}{10^3} = 10,000 \text{ ppm CaCO}_3$$

16 (d)

$$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$$

mm
$$20 \times 0.5$$
 20×1

taken =
$$10$$
 20 0

$$mm \qquad \qquad 0 \qquad \qquad 10 \qquad \qquad 10 \qquad \qquad 20$$

formed

Milli mole of
$$BaSO_4 = 10$$

or

Mole of $BaSO_4 = 10^{-2}$

17 **(d)**

Percentage of element M in $M_2O_3 = 53$

Let the atomic mass of M = x

Mass of Min $M_2O_3 = 2x$

Total atomic mass of $M_2O_3 = 2x + 16 \times 3$

$$= 2x + 48$$

Percentage of an element

$$= \frac{\text{Mass of an element in a compound}}{\text{Total mass of compound}} \times 100$$

$$53 = \frac{2x}{2x + 48} \times 100$$

$$53(2x + 48) = 200x$$

$$x = 27$$

18 **(a)**

H₃BO₃ accepts OH⁻ ions to act as weak monobasic Lewis acid.

$$H_3BO_3 + H_2O \rightarrow B(OH)_4 + H^+; K_a = 10^{-9}$$

19 **(a)**

Meq. of KOH added = $25 \times 0.4210 = 10.525$

Meq. of KOH left =
$$8.46 \times 0.2732 \times 2 = 4.623$$

: Meq. of KOH used by oil =
$$10.525 - 4.623 = 5.902$$

or
$$\frac{w}{56} \times 1000 = 5.902$$

or ${}^{W}KOH = 0.3305 g$

∴Saponification no.

= wt. of KOH used in mg per g of oil
=
$$\frac{0.3305}{1.5763} \times 1000$$

= 209.6

20 (c

$$(NH_4)_2SO_4 \rightarrow 2NH_3 + H_2O + SO_3$$

$$3NH_3 + 2HCl \rightarrow 2NH_4Cl$$

$$(NH_4)_2SO_4 \equiv 2NH_3 \equiv 2HCl$$

$$73gHCl \equiv 132g(NH_4)_2SO_4$$

292 g HCl
$$\equiv \frac{132 \times 292}{73}$$
g(NH₄)₂SO₄

$$= 528 g(NH_4)_2 SO_4$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
Α.	В	D	С	A	В	В	A	В	В	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	D	D	A	D	D	D	A	A	С
				·						

