CLASS : XIth
DATE :

Solutions

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

1

2
(b)

See mole ratio $A: B: C:: 1: 2: 1$
(d)
$1 \mathrm{mg} \mathrm{C}_{4} \mathrm{H}_{10}=\frac{14 \mathrm{~N}}{58} \times 10^{-3}$ atoms,
$1 \mathrm{mg} \mathrm{N} \mathrm{N}_{2}=\frac{2 N \times 10^{-3}}{28}$ atoms,
$1 \mathrm{mg} \mathrm{Na}=\frac{N \times 10^{-3}}{23}$ atoms,
$1 \mathrm{~mL}=1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=\frac{3 \mathrm{~N}}{18}$ atoms,
$(\because \mathrm{Mg}$ of a substance $=N$ molecules $=a \times N$ atoms; where a is number of atoms in one molecule).
(c)

An aromatic hydrocarbon (empirical formula $\mathrm{C}_{5} \mathrm{H}_{4}$)
$+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$ monosulphonic acid
$\because 0.104 \mathrm{~g}$ of monosulphonic acid required 10 mL
of $\frac{\mathrm{N}}{20} \mathrm{NaOH}$ for complete neutralisation
$\therefore \quad \frac{0.104}{n(5 \times 12+4 \times 1)}=\frac{1}{20} \times 10 \times 10^{-3}$
$n=\frac{104}{32}=3.25 \approx 3$
The molecular formula of hydrocarbon will be $\mathrm{C}_{15} \mathrm{H}_{12}$.
(a)

In 12 g carbon, mass of C-14 isotope $=12 \times \frac{2}{100}=0.24 \mathrm{~g}$
\therefore Number of C-14 atoms in 12 g of $C=\frac{0.24}{14} \times 6.02 \times 10^{23}$
$=1.032 \times 10^{22}$
5
(b)

To prepare 20 g zinc sulphate crystals, zinc required

$$
=\frac{22.65}{100} \times 20
$$

$$
=4.53 \mathrm{~g}
$$

6
(b)

Number of gram molecules $=\frac{6.02 \times 10^{25}}{6.02 \times 10^{23}}=100$
(a)

Ferrous is Fe^{2+}
(b)
$M=\frac{5}{34 \times 100 / 1000}=1.47$
(b) 4.6×10^{22} atoms weight $=13.8 \mathrm{~g}$

Hence, 6.02×10^{23} atoms will weigh
$=\frac{13.8 \times 6.02 \times 10^{23}}{4.6 \times 10^{22}}=108.6 \mathrm{~g}$ (molar mass)
(c)

Eq. of $\mathrm{HCl}=$ Eq. of CaCO_{3}
Thus, $\quad \frac{w}{36.5}=\frac{100}{50}$;
$\therefore \quad w=73 \mathrm{~g} \mathrm{HCl}$;
50 g HCl is present in 100 g HCl solution and thus, volume of solution required for,
$73 \mathrm{~g} \mathrm{HCl}=\frac{73 \times 100}{50}=146 \mathrm{~g}$.
(d)

The law of constant composition - According to this law, "A chemical compound is always found to be made up of the same elements combined together in the same proportions by weights".
This law is same as law of definite proportions.
(d)

Atomic weight of the element
$X=6.643 \times 10^{-23} \times N_{A}=40$
No. of moles of $X=\frac{20 \times 1000}{40}=500$
(a)

Limiting reagent is one which is completely consumed in reaction.
(d)
ppm $=$ wt. of solute in $10^{6} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$10^{3} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ contains $10 \mathrm{~g} \mathrm{CaCO}_{3}$
$\therefore 10^{6} \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ contains $=\frac{10 \times 10^{6}}{10^{3}}=10,000 \mathrm{ppm} \mathrm{CaCO}_{3}$
(d)

	$\mathrm{BaCl}_{2}+$	$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$		
mm	20×0.5	20×1		
taken	$=10$	20	0	0
mm	0	10	10	20

formed

$$
\text { Milli mole of } \mathrm{BaSO}_{4}=10
$$

or \quad Mole of $\mathrm{BaSO}_{4}=10^{-2}$
(d)

Percentage of element M in $M_{2} O_{3}=53$
Let the atomic mass of $M=x$
Mass of $\mathrm{Min} \mathrm{M}_{2} \mathrm{O}_{3}=2 x$
Total atomic mass of $M_{2} O_{3}=2 x+16 \times 3$
$=2 x+48$
Percentage of an element
$=\frac{\text { Mass of an element in a compound }}{\text { Total mass of compound }} \times 100$
$53=\frac{2 x}{2 x+48} \times 100$
$53(2 x+48)=200 x$
$x=27$
(a)
$\mathrm{H}_{3} \mathrm{BO}_{3}$ accepts OH^{-}ions to act as weak monobasic Lewis acid.
$\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B}(\mathrm{OH})_{\overline{4}}^{-}+\mathrm{H}^{+} ; \quad K_{a}=10^{-9}$
(a)

Meq. of KOH added $=25 \times 0.4210=10.525$
Meq. of KOH left $=8.46 \times 0.2732 \times 2=4.623$
\therefore Meq. of KOH used by oil $=10.525-4.623=5.902$
or

$$
\frac{w}{56} \times 1000=5.902
$$

or $\quad{ }^{w} \mathrm{KOH}=0.3305 \mathrm{~g}$
\therefore Saponification no.

$$
\begin{aligned}
& =\mathrm{wt} . \text { of } \mathrm{KOH} \text { used in } \mathrm{mg} \text { per } \mathrm{g} \text { of oil } \\
& =\frac{0.3305}{1.5763} \times 1000 \\
& =209.6
\end{aligned}
$$

(c)
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}$
$3 \mathrm{NH}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \equiv 2 \mathrm{NH}_{3} \equiv 2 \mathrm{HCl}$
$132 \mathrm{~g} \quad 73 \mathrm{~g}$
$73 \mathrm{gHCl} \equiv 132 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$292 \mathrm{~g} \mathrm{HCl} \equiv \frac{132 \times 292}{73} \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$=528 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	D	C	A	B	B	A	B	B	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	D	D	A	D	D	D	A	A	C			

