CLASS : XIth DATE :

DPP DAILY PRACTICE PROBLEMS Solutions

SUBJECT : CHEMISTRY DPP No. : 2

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

1	(c)							
	As ratio of masses of nitrogen per gram of hydrogen in hydrazine and NH_3							
	$=1\frac{1}{2}:1$							
	$=\frac{3}{2}:1 \text{ or } 3:2$							
	<i>ie</i> , the law of multiple proportions.							
3	(a)							
	Eq. of $H_2SO_4 = 0.5 \times 2 = 1.0$;							
	Eq. of Ca(OH) ₂ = 0.2 × $2 = 0.4$;							
	Equal Eq. reacts and th <mark>us, Eq. of CaSO4</mark> formed = 0.4							
	\therefore Mole of CaSO ₄ formed $\frac{0.4}{2} = 0.2$							
4	(d)							
	H_3PO_4 is tribasic acid and thus,							
	$N = M \times \text{basicity}$							
5	(d)							
	Empirical formula wt. =13							
	$\therefore \qquad n = \frac{\text{mol. wt.}}{\text{empirical formula wt.}} = \frac{78}{13} = 6$							
	\therefore Formula is (CH) ₆ , <i>i.e.</i> , C ₆ H ₆							
6	(a)							
	For first oxide,							
	Moles of oxygen= $\frac{22}{16} = 1.375$,							
	Moles of Fe $=\frac{78}{56} = 1.392$							
	Simpler molar ratio, $\frac{1.375}{1.375} = 1$, $\frac{1.392}{1.375} = 1$							
	\therefore The formula of first oxide is FeO.							
	Similarly for second oxide,							
	Moles of oxygen= $\frac{30}{16} = 1.875$,							
	Moles of $Fe = \frac{70}{56} = 1.25$							
	56 - 1.25							

Simple molar ratio $=\frac{1.875}{1.25} = 1.5, \frac{1.25}{1.25} = 1$ \therefore The formula of second oxide is Fe₂O₃. Suppose in both the oxides, iron reacts with *x*g of oxygen. ∴ Equivalent weight of Fe in FeO weight of Fe_{II} $\frac{1}{\text{weight of oxygen}} \times 8$ $\frac{56}{2} = \frac{\text{weight of Fe}_{\text{II}}}{x} \times 8$...(i) \therefore Equivalent weight of Fe in Fe₂O₃ $= \frac{\text{weight of Fe}_{III}}{\text{weight of oxygen}} \times 8$ $\frac{56}{3} = \frac{\text{weight of Fe}_{\text{III}}}{x} \times 8$...(ii) From Eq. (i) and (ii), $\frac{\text{weight of Fe}_{II}}{\text{weight of Fe}_{III}} = \frac{3}{2}$ (a) We know that protons in 1 mole $CaCO_3$ =atomic number of calcium + atomic number of carbon + 3 (atomic number of oxygen) = 20 + 6 + 3(8) = 50 mol : Proton in 10 g CaCO₃ = $\frac{10 \times 50}{100} \times 6.02 \times 10^{23}$ $= 3.01 \times 10^{24}$ (b) $MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + cl_2$ 2 mol 4 mol 1 mol 4 mol 22.4 L But the yield is 11.2. :. % yield $=\frac{11.2}{22.4} \times 100 = 50\%$ **(b)** $N = \frac{1}{49 \times (100/1000)} = 0.2$ (c) One mole of electrons = 6.023×10^{23} electrons Mass of one electron= 9.1×10^{-28} g Mass of one mole of electrons $= 6.023 \times 10^{23} \times 9.1 \times 10^{-28}$ g $= 5.48 \times 10^{-4}$ g = 0.548 mg $\approx 0.55 \text{ mg}$ (c) Eq. of metal = Eq. of Cl $\frac{74.4 - 35.5}{E} = \frac{35.5}{35.5}$:.

7

8

9

10

11

:. E = 38.912 (a) Equivalent wt of acid molecular weight of acid no.of H atoms replaced during reaction : Equivalent weight of acid depends on the reaction involved because different number of acids are replaced during different reactions. 14 (d) At. wt. = 2×31.82 $::Wt. of one atom = \frac{2 \times 31.82}{N} = \frac{63.64}{N}$ 15 (a) 22.4 litre = 1 mole; : $1m^3 = 10^3$ litre $= \frac{10^3}{22.4} = 44.6$ 16 (c) $2\text{KClO}_3 \rightarrow 2\text{KCl} + 3\text{O}_2\uparrow;$ 245 g KClO₃ on heating shows a wt. loss = 96 g (of O_2) \therefore 100 g KClO₃ on heating shows a wt. loss $=\frac{96 \times 100}{245}$ g = 39.18% 17 **(b)** Meq. = Normality \times *V* in mL $=500 \times 0.2 = 100$ 18 (a) Number of molecules $= \frac{mass \times N_A}{molar mass}$ 19 (d) $3F^- \equiv 1$ Formula unit (AlF₃) $3.0 \times 10^{24} F^- = 1 \times 10^{24}$ Formula units (AlF₃) 20 (d) One mole of CO₂ contains 6.02×10^{23} atoms of carbon and 6.023×10^{23} molecules of oxygen.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	D	A	D	D	А	A	В	В	C		
Α												
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	А	В	D	А	С	В	А	D	D		

