CLASS : XIth
DATE :

Solutions

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

(c)

As ratio of masses of nitrogen per gram of hydrogen in hydrazine and NH_{3}
$=1 \frac{1}{2}: 1$
$=\frac{3}{2}: 1$ or $3: 2$
$i e$, the law of multiple proportions.
(a)

Eq. of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.5 \times 2=1.0$;
Eq. of $\mathrm{Ca}(\mathrm{OH})_{2}=0.2 \times 2=0.4$;
Equal Eq. reacts and thus, Eq. of CaSO_{4} formed $=0.4$
\therefore Mole of CaSO_{4} formed $\frac{0.4}{2}=0.2$
(d)
$\mathrm{H}_{3} \mathrm{PO}_{4}$ is tribasic acid and thus,
$N=M \times$ basicity
(d)

Empirical formula wt. $=13$

$$
\therefore \quad n=\frac{\text { mol. wt. }}{\text { empirical formula } \mathrm{wt}}=\frac{78}{13}=6
$$

\therefore Formula is $(\mathrm{CH})_{6}$, i.e. , $\mathrm{C}_{6} \mathrm{H}_{6}$
(a)

For first oxide,
Moles of oxygen $=\frac{22}{16}=1.375$,
Moles of $\mathrm{Fe}=\frac{78}{56}=1.392$

\therefore The formula of first oxide is FeO .
Similarly for second oxide,
Moles of oxygen $=\frac{30}{16}=1.875$,
Moles of $\mathrm{Fe}=\frac{70}{56}=1.25$

Simple molar ratio $=\frac{1.875}{1.25}=1.5, \frac{1.25}{1.25}=1$
\therefore The formula of second oxide is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
Suppose in both the oxides, iron reacts with $x \mathrm{~g}$ of oxygen.
\therefore Equivalent weight of Fe in FeO
$\frac{\text { weight of } \mathrm{Fe}_{\text {II }}}{\text { weight of oxygen }} \times 8$
$\frac{56}{2}=\frac{\text { weight of } \mathrm{Fe}_{\text {II }}}{x} \times 8$
\therefore Equivalent weight of Fe in $\mathrm{Fe}_{2} \mathrm{O}_{3}$
$=\frac{\text { weight of } \mathrm{Fe}_{\text {III }}}{\text { weight of oxygen }} \times 8$
$\frac{56}{3}=\frac{\text { weight of } \mathrm{Fe}_{\text {III }}}{x} \times 8$
From Eq. (i) and (ii),
$\frac{\text { weight of } \mathrm{Fe}_{\text {II }}}{\text { weight of } \mathrm{Fe}_{\text {III }}}=\frac{3}{2}$
(a)

We know that protons in 1 mole CaCO_{3}
$=$ atomic number of calcium + atomic number of carbon +3 (atomic number of oxygen)
$=20+6+3(8)=50 \mathrm{~mol}$
\therefore Proton in $10 \mathrm{~g} \mathrm{CaCO}_{3}=\frac{10 \times 50}{100} \times 6.02 \times 10^{23}$
$=3.01 \times 10^{24}$
(b)
$\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{cl}_{2}$
2 mol 4 mol
1 mol
4 mol
22.4 L

But the yield is 11.2.
$\therefore \quad \%$ yield $=\frac{11.2}{22.4} \times 100=50 \%$
(b)
$N=\frac{1}{49 \times(100 / 1000)}=0.2$
(c)

One mole of electrons $=6.023 \times 10^{23}$ electrons
Mass of one electron $=9.1 \times 10^{-28} \mathrm{~g}$
Mass of one mole of electrons

$$
\begin{aligned}
& =6.023 \times 10^{23} \times 9.1 \times 10^{-28} \mathrm{~g} \\
& =5.48 \times 10^{-4} \mathrm{~g}=0.548 \mathrm{mg} \\
& \approx 0.55 \mathrm{mg}
\end{aligned}
$$

(c)

Eq. of metal $=$ Eq. of Cl

$$
\therefore \quad \frac{74.4-35.5}{E}=\frac{35.5}{35.5}
$$

$$
\therefore \quad E=38.9
$$

(a)

Equivalent wt of acid
$=\frac{\text { molecular weight of acid }}{\text { no.of } \mathrm{H} \text { atoms replaced during reaction }}$
\therefore Equivalent weight of acid depends on the reaction involved because different number of acids are replaced during different reactions.
(d)

At. wt. $=2 \times 31.82$
\therefore Wt. of one atom $=\frac{2 \times 31.82}{N}=\frac{63.64}{N}$
(a)
22.4 litre $=1$ mole;
$\therefore 1 \mathrm{~m}^{3}=10^{3}$ litre $=\frac{10^{3}}{22.4}=44.6$
(c)
$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2} \uparrow$;
245 g KClO 3 on heating shows a wt. loss $=96 \mathrm{~g}\left(\right.$ of $\left.\mathrm{O}_{2}\right)$
$\therefore 100 \mathrm{~g} \mathrm{KClO}_{3}$ on heating shows a wt. loss

$$
=\frac{96 \times 100}{245} \mathrm{~g}=39.18 \%
$$

(b)

Meq. $=$ Normality $\times V$ in mL

$$
=500 \times 0.2=100
$$

(a)

Number of molecules $=\frac{\text { mass } \times N_{A}}{\text { molar mass }}$
(d)
$3 F^{-} \equiv 1$ Formula unit $\left(\mathrm{AlF}_{3}\right)$
$3.0 \times 10^{24} F^{-}=1 \times 10^{24}$ Formula units $\left(\mathrm{AlF}_{3}\right)$
(d)

One mole of CO_{2} contains 6.02×10^{23} atoms of carbon and 6.023×10^{23} molecules of oxygen.

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	C	D	A	D	D	A	A	B	B	C	
A											
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	A	B	D	A	C	B	A	D	D	

