

CLASS : XIth DATE : SUBJECT : CHEMISTRY DPP No. : 10

Topic :- SOME BASIC CONCEPTS OF CHEMISTRY

- 1. When 10 g of methane is completely burnt in oxygen, the heat evolved is 560 kJ. What is the heat of combustion (in kJ mol⁻¹) of methane? a) -1120 b) -968 c) -896 d) -560 2. How much of 0.1 *M* H₂SO₄ solution is required to neutralize 50 mL of 0.2 *M* NaOH solution? a) 0.50 mL b) 50 mL c) 100 mL d) 5.0 Ml 3. One litre of CO_2 is passed over hot coke. The volume becomes 1.4 litre. The per cent composition of products is: a) 0.6 litre CO b) 0.8 litre CO₂ c) 0.6 litre CO₂ and 0.8 litre CO d) None of the above 4. Equivalent weight of oxygen is: a) 32 b)8 c) 16 d)24
- 5. Arsenic forms two oxides, one of which contains 65.2% and the other 75.5% of the element. Hence, equivalent masses of arsenic are in the ratio
 a) 1:2
 b) 3:5
 c) 13:15
 d) 2:1
- 6. The oxide of a metal contains 60 % of the metal. What will be the percentage of bromine in the bromide of the metal, if the valency of the metal is the same in both the oxide and the bromide?
 a) ≈ 87 b) ≈ 70 c) ≈ 77 d) ≈ 93
- 7. An aqueous solution of 6.3 g oxalic acid dihydrate is made up to 250 mL. The volume of 0.1 *N* NaOH required to completely neutralised 10 mL of this solution is:
 a) 40 mL
 b) 20 mL
 c) 10 mL
 d) 4 mL
- 8. The enthalpy of combustion of methane at 25⁰C is 890kJ. The heat liberated when 3.2 g of methane is burnt in air is

	a) 445 kJ	b) 278 kJ	c) -890 kJ	d) 178 kJ
9.	A signature written with carbon pencil weighs 1 mg. what is the number of carbon atoms			
	present in the signatur	e?		
	a) 6.02×10^{20}	b) 0.502×10^{20}	c) 5.02×10^{23}	d) 5.02×10^{20}
10.	If 1.2 g of a metal displace 1.12 litre hydrogen at normal temperature and pressure, equivalent			
	weight of metal would	be:		
	a) 12	b)24	c) 1.2×11.2	d)1.2 ÷ 11.2
11	34 g of hydrogen nerovide is present in 1120 mL of solution. This solution is called			
11.	34 g of flyul ogen per ox	b) 20 vol solution	c) 30 vol solution	d) 32 vol solution
		b) 20 voi solution		
12.	A sample of a mixture of $CaCl_2$ and $NaCl$ weighing 4.22 g was treated to precipitate all the l			
	as $CaCO_3$. This $CaCO_3$ is then heated and quantitatively converted into 0.959 g of CaO . Calculate the percentage of $CaCl_2$ in the mixture.			
	(Atomic mass of $Ca = 40.0 = 16.0 = 12$ and $Cl = 35.5$)			
	(11.0111) $(11.035) = 0.021 = 0.021$	h) 21 5%	(-) 45 04%	d) 68 48%
	4 9 9 1 9 7 9	5)=10,0	0) 1010 170	aj 0011070
13.	. 11.2 litre of NH_3 at STP has electrons:			
	a) 3.01×10^{21}	b) 3.01×10^{22}	c) 3.01×10^{25}	d) 3.01×10^{24}
	,	,	,	,
14.	Which of the following pair <mark>s contains equal</mark> number of atoms?			
	a) 11.2 cc (STP) of nitrogen and 0.015 g of nitric <mark>oxide</mark>			
	b) 22.4 L (STP) of nitrous o <mark>xide a</mark> nd 22.4 L of nitr <mark>ic oxi</mark> de			
	c) 1 millimole of HCL and 0 <mark>.5 mil</mark> limole of H ₂ S			
	d) 1 mole of H_2O_2 and 1	l mole of N ₂ O ₄		
15.	The number of atoms present in a molecule is called:			
	a) Atomicity	b) Molecularity	c) Poison's ratio	d)None of these
4.6				
16.	Which has the highest weight?			
	a) 1 m ³ of water	b) A normal adult man	C) 10 L Of Hg	d J All nave same weight
17	74.5 g of a metallic chloride contains 35.5 g of chloring, the equivalent weight of the metallic			
17.	a) 19 5	h) 35 5	c) 39	d) 78 0
	uj 19.0	0,00.0	6,55	uj / 0.0
18.	A compound contains 69.5% oxygen and 30.5% nitrogen and its molecular weight is 92. The			
-	formula of the compound is			
	a) N ₂ O	b) NO_2	c) N ₂ O ₄	d) N_2O_5
19.	he solid like conducting state of gases with free electrons is called			
	a) Sol state	b) Gel state	c) Plasma state	d) All of these

20. A g of a metal displaces V mL of H₂ at NTP. Equivalent weight E, of metal is:

a)
$$E = \frac{A}{\text{wt. of } H_2 \text{ displaced}} \times E_H$$

b) $E = \frac{A \times 1.008 \times 22400}{\text{volume of } H_2 \text{ displaced} \times 2}$
c) $E = \frac{A \times 1.008}{\text{volume of } H_2 \text{ displaced} \times 0.0000897}$
d) All of the above

