CLASS : XITH DATE :

(d)

DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : PHYSICS DPP NO. : 9

Topic :- MECHANICAL PROPERTIES OF SOLIDS

2

3

4

6

Young's modulus $Y = \frac{FL}{Al}$ or $F = \frac{YAl}{L}$ or $F \propto A$ or $F \propto r^2$ or $F \propto d^2$ $\therefore \quad \frac{F_1}{F_2} = \frac{d_1^2}{d_2^2}$ Given, $d_1 = d$, $d_2 = 2d$, $F_1 = 200$ N $\therefore \quad \frac{200}{F_2} = \frac{(d)^2}{(2d)^2} = \frac{1}{4}$ or $F_2 = 4 \times 200 = 800$ N **(b)** F = force developed $= YA \propto (\Delta \theta)$ $= 10^{11} \times 10^{-4} \times 10^{-5} \times 100 = 10^{4}$ N (c) For cylinder A, $\tau = \frac{\pi \eta r^4}{2l} \theta'$ For cylinder *B*, $\tau = \frac{\pi \eta (2r)^4 (\theta - \theta')}{2l}$ $\frac{\pi \eta r^4 \theta'}{2l} = \frac{\pi \eta (2r)^4 (\theta - \theta')}{2l}$ $\theta' = \frac{16}{17} \theta$ (d) $l = \frac{FL}{AY} \therefore l \propto \frac{1}{r^2} [F, L \text{ and } Y \text{ are constant}]$ $\frac{l_1}{l_2} = \left(\frac{r_2}{r_1}\right)^2 = (2)^2 = 4$

7 (a) Thermal stress = $Y \alpha \Delta \theta$ $= 1.2 \times 10^{11} \times 1.1 \times 10^{-5} \times (20 - 10) = 1.32 \times 10^{7} N/m^{2}$ 8 (b) Bulk modulus $K = \frac{\Delta p}{\Lambda V} V$ $\Delta p = \frac{K_{\Delta}V}{V}$ $\Delta p = \frac{2100 \times 10^6 \times 0.008}{200} = 84 \text{ kPa}$ 10 (d) $Y = \frac{F/A}{\Lambda l/l}$ Given, $F/A = \text{stress} = 3.18 \times 10^8 Nm^{-2}$ $l = 1m, Y = 2 \times 10^{11} Nm^{-2}$ $\Delta l = \frac{lF/A}{Y} = \frac{1 \times 3.18 \times 10^8}{2 \times 10^{11}} = 1.59 \times 10^{-3} m = 1.59 mm$ 11 (c) Isothermal elasticity $K_i = P = 1atm = 1.013 \times 10^5 N/m^2$ 12 (a) Young's modulus, $Y = \frac{mgL}{Al}$ $\Rightarrow \frac{l}{L} = \frac{mg}{AY}$ $\therefore \quad \frac{l}{L} = \frac{1 \times 10}{3 \times 10^{-6} \times 10^{11}}$ $= 0.3 \times 10^{-4}$ 13 (b) $\eta = \frac{Y}{2(1+\sigma)}$ or $\eta = \frac{2.4 \eta}{2(1+\sigma)}$ Or $1 + \sigma = 1.2$ or $\sigma = 0.2$ 14 (c) From figure the increase in length $\Delta l = (PR + RQ) - PQ$ = 2PR - PQ $= 2(l^{2} + x^{2})^{1/2} - 2l = 2l\left(1 + \frac{x^{2}}{l^{2}}\right)^{1/2} - 2l$ $= 2l \left[1 + \frac{1}{2} \frac{x^2}{l^2} \right] - 2l$ $= x^2/l$ (By Binomial theorem) \therefore Strain = $\Delta l/2l = x^2/2l^2$

15

Work done on the wire to strain it will be stored as energy which is converted to heat. Therefore, the temperature increases.

16

(a)

(c)

(a)

=

(b)

Because dimension of invar does not vary with temperature

17

Bulk modulus, $B = -\frac{P}{\left(\frac{\Delta V}{V}\right)}$

- ve sign shows that with an increase in pressure, a decrease in volume occurs

Compressibility, $k = \frac{1}{B} = -\frac{\Delta V}{PV}$

Decrease in volume, $\Delta V = PVk$

 $= 4 \times 10^7 \times 1 \times 6 \times 10^{-10} = 24 \times 10^{-3}$ litre

 $= 24 \times 10^{-3} \times 10^{3} cm^{3} = 24 cc$

18

Shearing modulus of cube

 $\eta = \frac{FL}{Al}$

$$\frac{8 \times 10^3 \times 40 \times 10^{-3}}{(40 \times 10^{-3})^2 \times (0.1 \times 10^{-3})} = 2 \times 10^9 \text{Nm}^{-2}$$

$$Y = \frac{F}{A} \times \frac{L}{l}$$
 or force constant $= \frac{F}{l} = \frac{YA}{L}$

20

19

$$K = Yr_0 = 20 \times 10^{10} \times 3 \times 10^{-10} = 60 N/m$$

= 6 × 10⁻⁹N/Å

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	D	В	С	С	D	А	В	С	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	А	В	С	С	A	С	А	D	В

