CLASS : XITh
Solutions

Topic :- MECHANICAL PROPERTIES OF SOLIDS

2
(d)

Young's modulus $\quad Y=\frac{F L}{A l}$
or $F=\frac{Y A l}{L}$
or $F \propto A$ or $F \propto r^{2}$ or $F \propto d^{2}$
$\therefore \quad \frac{F_{1}}{F_{2}}=\frac{d_{1}^{2}}{d_{2}^{2}}$
Given, $d_{1}=d, d_{2}=2 d, F_{1}=200 \mathrm{~N}$
$\therefore \quad \frac{200}{F_{2}}=\frac{(d)^{2}}{(2 d)^{2}}=\frac{1}{4}$
or $\quad F_{2}=4 \times 200=800 \mathrm{~N}$
(b)
$F=$ force developed
$=Y A \propto(\Delta \theta)$
$=10^{11} \times 10^{-4} \times 10^{-5} \times 100=10^{4} \mathrm{~N}$
4 (c)
For cylinder A,
$\tau=\frac{\pi \eta r^{4}}{2 l} \theta^{\prime}$
For cylinder $B, \quad \tau=\frac{\pi \eta(2 r)^{4}\left(\theta-\theta^{\prime}\right)}{2 l}$
$\frac{\pi \eta r^{4} \theta^{\prime}}{2 l}=\frac{\pi \eta(2 r)^{4}\left(\theta-\theta^{\prime}\right)}{2 l}$
$\theta^{\prime}=\frac{16}{17} \theta$
6
(d)
$l=\frac{F L}{A Y} \therefore l \propto \frac{1}{r^{2}}[F, L$ and Y are constant $]$
$\frac{l_{1}}{l_{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{2}=(2)^{2}=4$

7
(a)

Thermal stress $=Y \alpha \Delta \theta$
$=1.2 \times 10^{11} \times 1.1 \times 10^{-5} \times(20-10)=1.32 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
8
(b)

Bulk modulus $K=\frac{\Delta p}{\Delta V} V$
$\Delta p=\frac{K_{\Delta} V}{V}$
$\Delta p=\frac{2100 \times 10^{6} \times 0.008}{200}=84 \mathrm{kPa}$
(d)
$Y=\frac{F / A}{\Delta^{l / l}}$
Given, $F / A=$ stress $=3.18 \times 10^{8} \mathrm{Nm}^{-2}$
$l=1 \mathrm{~m}, Y=2 \times 10^{11} \mathrm{Nm}^{-2}$
$\Delta l=\frac{l F / A}{Y}=\frac{1 \times 3.18 \times 10^{8}}{2 \times 10^{11}}=1.59 \times 10^{-3} \mathrm{~m}=1.59 \mathrm{~mm}$
(c)

Isothermal elasticity $K_{i}=P=1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
(a)

Young's modulus, $Y=\frac{m g L}{A l}$
$\Rightarrow \frac{l}{L}=\frac{m \mathrm{~g}}{A Y}$
$\therefore \frac{l}{L}=\frac{1 \times 10}{3 \times 10^{-6} \times 10^{11}}$
$=0.3 \times 10^{-4}$
(b)
$\eta=\frac{Y}{2(1+\sigma)}$ or $\eta=\frac{2.4 \eta}{2(1+\sigma)}$
Or $1+\sigma=1.2$ or $\sigma=0.2$
(c)

From figure the increase in length $\Delta l=(P R+R Q)-P Q$
$=2 P R-P Q$
$=2\left(l^{2}+x^{2}\right)^{1 / 2}-2 l=2 l\left(1+\frac{x^{2}}{l^{2}}\right)^{1 / 2}-2 l$
$=2 l\left[1+\frac{1}{2} \frac{x^{2}}{l^{2}}\right]-2 l$
$=x^{2} / l($ By Binomial theorem $)$
$\therefore \quad$ Strain $=\Delta l / 2 l=x^{2} / 2 l^{2}$

(c)

Work done on the wire to strain it will be stored as energy which is converted to heat. Therefore, the temperature increases.
(a)

Because dimension of invar does not vary with temperature
(c)

Bulk modulus, $B=-\frac{P}{\left(\frac{\Delta_{V}}{V}\right)}$

- ve sign shows that with an increase in pressure, a decrease in volume occurs

Compressibility, $k=\frac{1}{B}=-\frac{\Delta V}{P V}$
Decrease in volume, $\Delta V=P V k$
$=4 \times 10^{7} \times 1 \times 6 \times 10^{-10}=24 \times 10^{-3}$ litre
$=24 \times 10^{-3} \times 10^{3} \mathrm{~cm}^{3}=24 \mathrm{cc}$
(a)

Shearing modulus of cube
$\eta=\frac{F L}{A l}$
$=\frac{8 \times 10^{3} \times 40 \times 10^{-3}}{\left(40 \times 10^{-3}\right)^{2} \times\left(0.1 \times 10^{-3}\right)}=2 \times 10^{9} \mathrm{Nm}^{-2}$
(d)
$Y=\frac{F}{A} \times \frac{L}{l}$ or force constant $=\frac{F}{l}=\frac{Y A}{L}$
(b)
$K=Y r_{0}=20 \times 10^{10} \times 3 \times 10^{-10}=60 \mathrm{~N} / \mathrm{m}$
$=6 \times 10^{-9} \mathrm{~N} / \AA$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	D	B	C	C	D	A	B	C	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	A	B	C	C	A	C	A	D	B		

