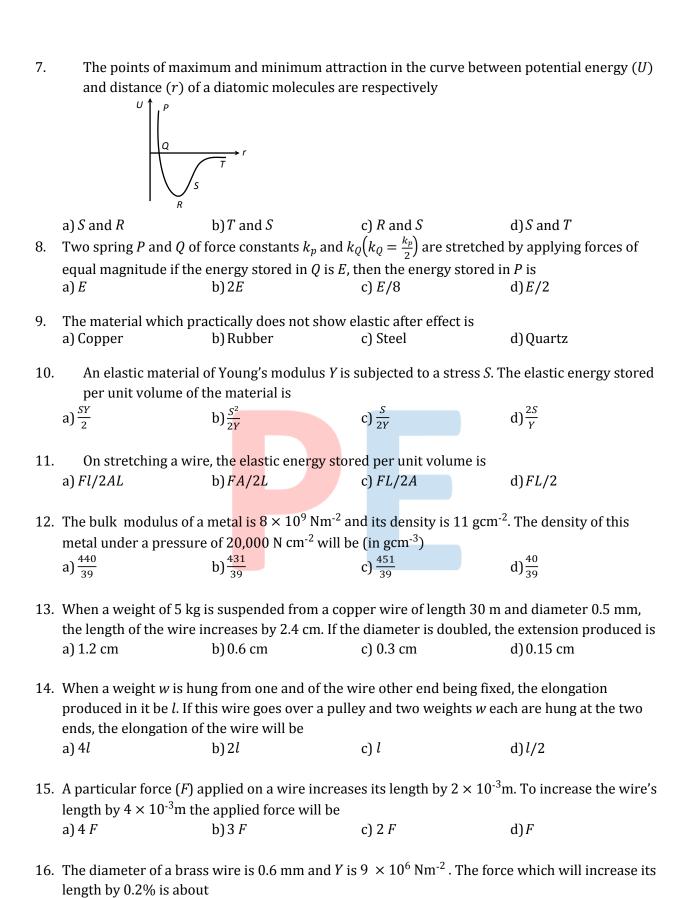


CLASS: XITH SUBJECT: PHYSICS DPP NO.:8 DATE:

1.	An iron bar of length <i>L</i> , cross-section <i>A</i> and Young's modulus <i>Y</i> is pulled by a force <i>F</i> from both
	ends so as to produce an elongation $\it l$. Which of the following statement is correct?

- a) $l \propto Y$
- b) $l \propto l/A$ c) $l \propto A$
- d) $l \propto l/L$
- 2. Compressibility of water is 5×10^{10} m²N⁻¹. The change in volume of 100 mL water subjected to 15×10^6 Pa pressure will
 - a) No change
- b) Increase by 0.75 mL c) Decrease by 1.50 mL d) Decrease by 0.75 mL
- 3. The graph shown was obtained from the experimental measurements of the period of oscillation T for different masses M placed in the scale on the lower end of the spring balance. The most likely reason for the line not passing through the origin is that


- a) Spring did not obey Hook's law c)Clock used needed regulation
- b) Amplitude of oscillation was too large d)Mass of the pan was not neglected
- 4. A fixed volume of iron is drawn into a wire of length *L*. The extension *x* produced in this wire by a constant force F is proportional to
 - a) $\frac{1}{12}$

b) $\frac{1}{I}$

- d)L
- 5. A beam of metal supported at the two ends is loaded at the centre. The depression at the centre is proportional to
 - a) Y^2

b) Y

- c) 1/Y
- d) $1/Y^2$
- 6. To break a wire of one metre length, minimum 40 kg wt, is required. Then the wire of the same material of double radius and 6 *m* length will require breaking weight
 - a) 80 *kg-wt*
- b) 240 *kg-wt*
- c) 200 *kg-wt*
- d) 160 *kg-wt*

a) 100 N

c) 25 N

b)51 N

d) None of these

- 17. An aluminium rod, Young's modulus $7.0 \times 10^9 \text{N m}^{-2}$, has a breaking strain of 0.2%. The minimum cross-sectional area of the rod in m^2 in order to support a load of 10^4 N is
 - a) 1×10^{-2}
- b) 1.4×10^{-3}
- c) 1.0×10^{-3}
- d) 7.1×10^{-4}

- 18. In the above graph, point *D* indicates
 - a) Limiting point
- b) Yield point
- c) Breaking point
- d) None of the above
- 19. A steel wire of 1m long and $1mm^2$ cross section area is hang from rigid end. When weight of 1kg is hung from it then change in length will be (given $Y = 2 \times 10^{11} N/m^2$)
 - a) 0.5 mm
- b) 0.25 mm
- c) 0.05 mm
- d) 5 mm

- 20. Hooke's law defines
 - a) Stress
- b) Strain
- c) Modulus of elasticity d) Elastic limit

