

CLASS : XITH DATE : SUBJECT : PHYSICS DPP NO. :7

d) $\frac{1}{2}Yx^2$

Topic :- MECHANICAL PROPERTIES OF SOLIDS

- 1. The length of a wire is 1.0 *m* and the area of cross-section is $1.0 \times 10^{-2} cm^2$. If the work one for increase in length by 0.2 *cm* is 0.4 *joule*, then Young's modulus of the material of the wire is a) $2.0 \times 10^{10} N/m^2$ b) $4.0 \times 10^{10} N/m^2$ c) $2.0 \times 10^{11} N/m^2$ d) $4.0 \times 10^{11} N/m^2$
- 2. *X* linear strain is produced in a wire of elasticity coefficient *Y*. The stored potential energy in unit volume of this wire is
 - a) Yx^2

- c) $\frac{1}{2}Y^2x$
- 3. Two bars *A* and *B* of circular cross-section and of same volume and made of the same material are subjected to tension. If the diameter of *A* is half that of *B* and if the force applied to both the rods is the same and it is in the elastic limit, the ratio of extension of *A* to that of *B* will be a) 16 b) 8 c) 4 d) 7
- 4. Find the extension produced in a copper of length 2 m and diameter 3 mm, when a force of 30
N is applied. Young's modulus for copper = $1.1 \times 10^{11} \text{Nm}^{-2}$
a) 0.2 mmd) 0.04 mmc) 0.08 mmd) 0.68 mm
- 5. Which is the most elastic
a) Ironb) Copperc) Quartzd) Wood

b) $2Yx^2$

6. A force of 200 *N* is applied at one end of a wire of length 2*m* and having area of cross-section $10^{-2}cm^2$. The other end of the wire is rigidly fixed. If coefficient of linear expansion of the wire $\alpha = 8 \times 10^{-6}$ /°C and Young's modulus $Y = 2.2 \times 10^{11} N/m^2$ and its temperature is increased by 5°C, then the increase in the tension of the wire will be

a) 4.2 <i>N</i>	b)4.4 <i>N</i>	c) 2.4 <i>N</i>	d) 8.8 <i>N</i>
-----------------	----------------	-----------------	-----------------

7. Two wires, one made of copper and other of steel are joined end to end (as shown in figure). The area of cross-section of copper wire is twice that of steel wire.

They are placed under compressive force of magnitudes *F*. The ratio for their lengths such that change in lengths of both wires are same is $(Y_s = 2 \times 10^{11} \text{Nm}^{-2} \text{ and } Y_c = 1.1 \times 10^{11} \text{ Nm}^{-2})$ a) 2.1 b) 1.1 c) 1.2 d) 2

- 8. A rubber cord catapult has cross-sectional area $25 mm^2$ and initial length of rubber cord is 10 cm. It is stretched to 5 cm and then released to project a missile of mass 5gm. Taking $Y_{rubber} = 5 \times 10^8 N/m^2$ velocity of projected missile is a) 20 ms⁻¹ b) 100 ms⁻¹ c) 250 ms⁻¹ d) 200 ms⁻¹
- 9. Young's modulus of perfectly rigid body material is
a) Infiniteb) Zeroc) 10×10^{10} Nm⁻²d) 1×10^{10} Nm⁻²
- 10. The Poisson's ratio of a material is 0.1. If the longitudinal strain of a rod of this material is 10⁻³, then the percentage change in the volume of the rod will be a) 0.008% b) 0.08% c) 0.8% d) 8%
- 11. If a spring extends by x on loading, then the energy stored by the spring is (if T is tension in the spring and k is spring constant)

a)
$$\frac{T^2}{2x}$$
 b) $\frac{T^2}{2k}$ c) $\frac{2x}{T^2}$ d) $\frac{2T^2}{k}$

12. A load of 4.0 kg is suspended from a ceiling through a steel wire of length 2.0 m and radius 2.0 mm. It is found that the length of the wire increase by 0.031 mm as equilibrium is achieved. Taking g = 3.1π ms⁻², the Young's modulus of steel is a) 2.0×10^8 Nm⁻² b) 2.0×10^9 Nm⁻² c) 2.0×10^{11} Nm⁻² d) 2.0×10^{13} Nm⁻²

- A cube is shifted to a depth of 100 m in a lake. The change in volume is 0.1%. The bulk modulus of the material is nearly
 - a) 10 Pa b) 10^4 Pa c) 10^7 Pa d) 10^6 Pa
- 14. Calculate the work done, if a wire is loaded by 'Mg' weight and the increase in length is 'l'a) Mglb) Zeroc) Mgl/2d) 2Mgl

15. In the figure three identical springs are shown. From spring *A*, a mass of 4 kg is hung and spring shows elongation of 1 cm. But when a weight of 6 kg is hung on *B*, the Hook descends

- 16. A steel wire has length 2 m, radius 1 mm and $Y = 2 \times 10^{11}$ Nm⁻². A 1 kg sphere is attached to one end of the wire and whirled in a vertical circle with an angular velocity of 2 revolutions per second. When the sphere is at the lowest point of the vertical circle, the elongation of the wire is nearly (Take g = 10ms⁻²) a) 1 mm b) 2 mm c) 0.1 mm d) 0.01 mm
- 17. Which of the following statements is correct
 - a) Hooke's law is applicable only within elastic limit
 - b) The adiabatic and isothermal elastic constants of a gas are equal
 - c) Young's modulus is dimensionless
 - d) Stress multiplied by strain is equal to the stored energy

18.	What among of work is	don <mark>e in</mark> i	increas	ing th	e ler	ngth c	of a wire tl	ough unity ?	
	a) $\frac{YL}{2A}$	b) $\frac{YL^2}{2A}$			C	$\frac{YA}{2L}$		d) $\frac{YL}{A}$	
19.	After effects of elasticit a) Glass	y are ma b) <mark>Quart</mark>	ximum z	for	c) Rub	ber	d) Metal	
20.	The upper end of a wire	e of radiu	ls 4 mn	n lengt	th 10)0 cm	is clampe	d and its other end	l is

through an angle of 30°. Then angle of shear is a) 12° b) 0.12° c) 1.2° d) 0.012°

twisted