CLASS : XITH
SUBJECT : PHYSICS
DATE :
DPP NO. :6

Topic :- MECHANICAL PROPERTIES OF SOLIDS

1. The stress versus strain graphs for wires of two materials A and B are as shown in the figure. If Y_{A} and Y_{B} are the Young's modulii of the materials, then

a) $Y_{B}=2 Y_{A}$
b) $Y_{A}=Y_{B}$
c) $Y_{B}=3 Y_{A}$
d) $Y_{A}=3 Y_{B}$
2. A wire whose cross-section is $4 \mathrm{~mm}^{2}$ is stretched by 0.1 mm by a certain weight. How far will a wire of the same material and length stretch if its cross-sectional area is $8 \mathrm{~mm}^{2}$ and the same weight is attached?
a) 0.1 mm
b) 0.05 mm
c) 0.025 mm
d) 0.012 mm
3. A uniform metal rod of $2 \mathrm{~mm}^{2}$ cross-section is heated from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. The coefficient of the linear expansion of the rod is $12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$. Its Young's modulus of elasticity is $10^{11} \mathrm{Nm}^{-2}$. The energy stored per unit volume of the rod is
a) $1440 \mathrm{Jm}^{-3}$
b) $15750 \mathrm{Jm}^{-3}$
c) $1500 \mathrm{Jm}^{-3}$
d) $2880 \mathrm{Jm}^{-3}$
4. The diagram shows stress v / s strain curve for the materials A and B. From the curves we infer that

a) A is brittle but B is ductile
b) A ductile and B is brittle
c) Both A and B are ductile
d) Both A and B are brittle
5. What is the increase in elastic potential energy when the stretching force is increased by 200 kN ?
a) 238.5 J
b) 636.0 J
c) 115.5 J
d) 79.5 J
6. The energy stored per unit volume in copper wire, which produces longitudinal strain of 0.1% is $\left(Y=1.1 \times 10^{11} \mathrm{Nm}^{-2}\right)$
a) $11 \times 10^{3} \mathrm{Jm}^{-3}$
b) $5.5 \times 10^{3} \mathrm{Jm}^{-3}$
c) $5.5 \times 10^{4} \mathrm{Jm}^{-3}$
d) $11 \times 10^{4} \mathrm{Jm}^{-3}$
7. The length of an elastic string is a metre when the tension is 44 N , and b metre when the tension is 5 N . The length in metre when the tension is 9 N , is
a) $4 a-5 b$
b) $5 b-4 a$
c) $9 b-9 a$
d) $a+b$
8. A wire of length 50 cm and cross sectional area of $1 \mathrm{sq} . \mathrm{mm}$ is extended by 1 mm . The required work will be ($Y=2 \times 10^{10} \mathrm{Nm}^{-2}$)
a) $6 \times 10^{-2} \mathrm{~J}$
b) $4 \times 10^{-2} \mathrm{~J}$
c) $2 \times 10^{-2} \mathrm{~J}$
d) $1 \times 10^{-2} \mathrm{~J}$
9. When a force is applied on a wire of uniform cross sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ and length 4 m , the increase in length is 1 mm . Energy stored in it will be $\left.\left(Y=2 \times 10^{11}\right) \mathrm{Nm}^{-2}\right)$
a) 6250 J
b) 0.177 J
c) 0.075 J
d) 0.150 J
10. The force required to stretch a steel wire of $1 \mathrm{~cm}^{2}$ cross-section to 1.1 times its length would be $\left(Y=2 \times 10^{11} \mathrm{Nm}^{-2}\right)$
a) $2 \times 10^{6} \mathrm{~N}$
b) $2 \times 10^{3} \mathrm{~N}$
c) $2 \times 10^{5} \mathrm{~N}$
d) $2 \times 10^{-6} \mathrm{~N}$
11. A wire of Young's modulus $1.5 \times 10^{12} \mathrm{Nm}^{-2}$ is stretched by a force so as to produce a strain of 2×10^{4}. The energy stored per unit volume is
a) $3 \times 10^{8} \mathrm{Jm}^{-3}$
b) $3 \times 10^{3} \mathrm{Jm}^{-3}$
c) $6 \times 10^{3} \mathrm{Jm}^{-3}$
d) $3 \times 10^{4} \mathrm{Jm}^{-3}$
12. The relationship between Young's modulus Y, Bulk modulus K and modulus of rigidity η is
a) $Y=\frac{9 \eta K}{\eta+3 K}$
b) $\frac{9 Y K}{Y+3 K}$
c) $Y=\frac{9 \eta K}{3+K}$
d) $Y=\frac{3 \eta K}{9 \eta+K}$
13. A rod elongated by l when a body of mass M is suspended from it. The work done is
a) $M g l$
b) $\frac{1}{2} \mathrm{Mg} l$
c) 2 Mgl
d) zero
14. A graph is shown between stress and strain for a metal. The part in which Hooke's law holds good is

a) $O \mathrm{~A}$
b) $A B$
c) $B C$
d) $C D$
15. For a given material, the Young's modulus is 2.4 times that of rigidity modulus. Its Poisson's ratio is
a) 2.4
b) 1.2
c) 0.4
d) 0.2
16. The lower surface of a cube is fixed. On its upper surface, force is applied at an angle of 30° from its surface. The change will be of the type
a) Shape
b) Size
c) None
d) Shape and size
17. A steel wire of cross-sectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ can withstand a maximum strain of 10^{-3}. Young's modulus of steel is $2 \times 10^{11} \mathrm{Nm}^{-2}$. The maximum mass the wire can hold is (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
a) 40 kg
b) 60 kg
c) 80 kg
d) 100 kg
18. A force F is needed to break a copper wire having radius R. The force needed to break a copper wire of radius $2 R$ will be
a) $F / 2$
b) $2 F$
c) $4 F$
d) $F / 4$
19. The adjacent graph shows the extension (l) of a wire of length 1 m suspended from the top of a roof at one end and with a load W connected to the other end. If the cross-sectional area of the wire is $10^{-6} \mathrm{~m}^{2}$, calculate the Young's modulus of the material of the wire.

a) $2 \times 10^{11} \mathrm{Nm}^{-2}$
b) $2 \times 10^{-11} \mathrm{Nm}^{-2}$
c) $3 \times 10^{12} \mathrm{Nm}^{-2}$
d) $2 \times 10^{13} \mathrm{Nm}^{-2}$
20. The Young's modulus of brass and steel are $10 \times 10^{10} \mathrm{Nm}^{-2}$ and $2 \times 10^{11} \mathrm{Nm}^{-2}$ respectively. A brass wire and a steel wire of the same length are extended by 1 mm under the same force. The radii of the brass and steel wires are R_{B} and R_{S} respectively. Then
a) $R_{A}=\sqrt{2} R_{B}$
b) $R_{S}=\frac{R_{B}}{\sqrt{2}}$
c) $R_{S}=4 R_{B}$
d) $R_{S}=\frac{R_{B}}{4}$

