CLASS : XITH
DATE :

SUBJECT : PHYSICS
DPP NO. : 6

TOpic :- MECHANICAL PROPERTIES OF SOLIDS

1
(d)
$\frac{Y_{A}}{Y_{B}}=\frac{\tan \theta_{A}}{\tan \theta_{B}}=\frac{\tan 60}{\tan 30}=\frac{\sqrt{3}}{1 / \sqrt{3}}=3 \Rightarrow Y_{A}=3 Y_{B}$

2
(b)
$Y=\frac{F l}{A_{\Delta} l}$
Y, F and l are constants.
$\therefore \frac{\Delta^{l_{2}}}{\Delta_{1}}=\frac{a_{1}}{a_{2}}=\frac{4}{8}=\frac{1}{2}$
Or $\Delta l_{2}=\frac{\Delta^{l_{1}}}{2}=\frac{0.1}{2} \mathrm{~mm}=0.5 \mathrm{~mm}$
(d)

Energy stored per unit volume is given by

$$
\begin{aligned}
& W=\frac{Y \times(\text { strain })^{2}}{2} \\
& =\frac{10^{11}}{2} \times\left(\frac{\text { change in length }}{\text { original length }}\right)^{2}
\end{aligned}
$$

where Y is Young's modulus
$=\frac{10^{11}}{2}\left(\frac{\propto L_{\Delta} \theta}{L}\right)^{2}$
$=\frac{10^{11}}{2}\left(12 \times 10^{-6} \times 20\right)^{2}=2880 \mathrm{Jm}^{-3}$
(b) yielding
(b)

In ductile materials, yield point exist while in Brittle material, failure would occur without

Initial elastic potential energy

$$
U_{1}=\frac{1}{2} F \Delta l=\frac{1}{2}=\frac{1}{2} \times(100 \times 1000) \times\left(1.59 \times 10^{-3}\right)=79.5 \mathrm{~J}
$$

Let Δl_{1}, be the elongation in the rod when stretching force is increased by, 200 N, Since, Δl $=\frac{F}{\pi r^{2}} \times \frac{l}{Y} ; s o, \Delta l \propto F$
$\therefore \quad \frac{\Delta^{l_{1}}}{\Delta^{l}}=\frac{F_{1}}{F}=\frac{100+200}{100}=3$
Or $\quad \Delta l_{1}=3 \Delta l=3 \times 1.59 \times 10^{-3} \mathrm{~m}=4.77 \times 10^{-3} \mathrm{~m}$
Final elastic potential energy is
$U_{1}=\frac{1}{2} F_{1} \Delta l_{1}=\frac{1}{2} \times\left(300 \times 10^{3}\right) \times\left(4.77 \times 10^{-3}\right)=715.5 \mathrm{~J}$
Increase in elastic potential energy
$=715.5-79.5=636.0 \mathrm{~J}$
(c)

Elastic potential energy (U) is given by
$U=\frac{1}{2} F \times l$
$=\frac{1}{2} \times \frac{F}{A} \times \frac{l}{L} \times A L$
where, L is length of wire, A is area of cross-section of wire, F is stretching force and l is increase in length.
Eq. (i) may be written as
$U=\frac{1}{2} \times$ stress \times strain \times volume of the wire
\therefore Elastic potential energy per unit volume of the wire
$u=\frac{U}{A L}=\frac{1}{2} \times$ stress \times srain
$=\frac{1}{2} \times($ Young's modulus \times strain $) \times$ strain
$=\frac{1}{2} \times(Y) \times(\text { strain })^{2}$
Hence,
$u=\frac{1}{2} \times 1.1 \times 10^{11} \times\left(\frac{0.1}{100}\right)^{2}$
$=5.5 \times 10^{4} \mathrm{Jm}^{-3}$
7
(b)
$T_{1}=K\left(l-l_{1}\right)$
$T_{2}=K\left(l-l_{2}\right)$
So, $\frac{T_{1}}{T_{2}}=\frac{l-l_{1}}{\left(l-l_{2}\right)}$
$\therefore T_{1} l-T_{1} l_{2}=T_{2} l-T_{2} l_{1}$
$\left(T_{1}-T_{2}\right) l=T_{1} l_{2}-T_{2} l_{1}$
$l=\frac{T_{1} l_{2}-T_{2} l_{1}}{\left(T_{1}-T_{2}\right)}$
$l=(5 a-4 b)$
$k=\frac{1}{b-a}$
So, length of wire when tension is 9 N
$9=k l^{\prime}$

$$
\left(l^{\prime}=\text { change in length }\right)
$$

$9=\frac{1}{(b-a)} \times l^{\prime} \Rightarrow l^{\prime}=9 b-9 a$
Hence, final length $=l+l^{\prime}$
$=5 a-4 a+9 a-9 a$
$l_{0}=5 b-4 a$

8
(c)
$W=\frac{Y A l^{2}}{2 L}=\frac{2 \times 10^{10} \times 10^{-6} \times\left(10^{-3}\right)^{2}}{2 \times 50 \times 10^{-2}}=2 \times 10^{-2} \mathrm{~J}$
(c)

Energy $U=\frac{1}{2} \times \frac{4 A l^{2}}{L}$
$=\frac{1}{2} \times \frac{2 \times 10^{11} \times 3 \times 10^{-6} \times\left(1 \times 10^{-3}\right)^{2}}{4}$
$=0.075 \mathrm{~J}$
(a)
$F=Y A \frac{\Delta^{L}}{L}=2 \times 10^{11} \times\left(10^{-4}\right) \times 0.1=2 \times 10^{6} \mathrm{~N}$
(d)

Energy stored per unit volume
$=\frac{1}{2} Y(\text { strain })^{2}=\frac{1}{2} \times 1.5 \times 10^{12} \times\left(2 \times 10^{-4}\right)^{2}$
$=3 \times 10^{4} \mathrm{Jm}^{-3}$
(a)
$Y=3 K(1-2 \sigma)$ and $Y=2 \eta(1+\sigma)$
Eliminating σ we get $Y=\frac{9 \eta K}{\eta+3 K}$
(b)

Work done $=\frac{1}{2} F \times \Delta l=\frac{1}{2} M g l$
(a)

In the figure $O A$, stress \propto strain i.e. Hooke's law hold good
(d)
$Y=2 \mathrm{n}(1+\sigma)$
$\Rightarrow 2.4 \eta=2 \eta(1+\sigma)$
$\Rightarrow 1.2=1+\sigma$
$\Rightarrow \quad \sigma=0.2$
(d)

There will be both shear stress and normal stress
(b)

Young's modulus $Y=\frac{\text { Stress }}{\text { Strain }}=\frac{\frac{F}{A}}{\text { Strain }}$
or $Y \frac{\mathrm{mg}}{A \times \text { strain }}$
or $m=\frac{Y_{\times} A \times \text { strain }}{\mathrm{g}}$
$=\frac{2 \times 10^{11} \times 10^{-3} \times 10^{-6}}{10}=60 \mathrm{~kg}$

20
(c) Breaking Force \propto Area of cross section of wire $\left(\pi r^{2}\right)$ If radius of wire is double then breaking force will become four times
(a)

Extensions $\Delta l=\left(\frac{L}{Y A}\right) \cdot W$
$i e$, graph is a straight line passing through origin (as shown in question also), the slope of which is $\frac{L}{Y A}$
Slope $=\left(\frac{L}{Y A}\right)$
$Y=\left(\frac{L}{A}\right)\left(\frac{1}{\text { slope }}\right)$
$=\left(\frac{1.0}{10^{-6}}\right) \frac{(80-20)}{(4-1) \times 10^{-4}}$
$=2.0 \times 10^{11} \mathrm{Nm}^{-2}$
(b)
$Y=\frac{F}{\pi R^{2}} \times \frac{l}{\Delta^{l}}$
F, l and Δl are constants.
$\therefore R^{2} \propto \frac{1}{Y}$
$\frac{R_{S}^{2}}{R_{B}^{2}}=\frac{Y_{B}}{Y_{S}}=\frac{10^{11}}{2 \times 10^{11}}=\frac{1}{2}$
Or $\frac{R_{S}}{R_{B}}=\frac{1}{\sqrt{2}}$ or $R_{S}=\frac{R_{B}}{\sqrt{2}}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	B	D	B	B	C	B	C	C	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	A	B	A	D	D	B	C	A	B		

