Topic :- MECHANICAL PROPERTIES OF SOLIDS

1
(b)
$U=\frac{1}{2} \times \frac{(\text { stress })^{2}}{Y} \times$ volume $=\frac{1}{2} \times \frac{F^{2} \times A \times L}{A^{2} \times Y}$
$=\frac{1}{2} \times \frac{F^{2} L}{A Y}=\frac{1}{2} \times \frac{(50)^{2} \times 0.2}{1 \times 10^{-4} \times 1 \times 10^{11}}=2.5 \times 10^{-5} \mathrm{~J}$
(d)

Young's modulus, $\quad Y=\frac{\text { Stress }}{\text { Strain }}=\frac{\text { Force }}{\frac{\text { Area }}{L}} \frac{L}{L}$
Where, l is change in length and L the original length.
Force $=m g$, Area $=A=\pi r^{2}$
$\therefore Y=\frac{F L}{\pi r^{2} l}$
$\therefore \frac{Y_{1}}{Y_{2}}=\frac{F_{1} L_{1}}{\pi r_{1}^{2} l_{1}} \times \frac{\pi r_{2}^{2} l_{2}}{F_{2} L_{2}}$
$\Rightarrow \quad \frac{l_{1}}{l_{2}}=\frac{r_{2}^{2}}{r_{1}^{2}}$
(as all other quantities remain same for both the wires)
Given, $r_{2}=2 r_{1}$
$\therefore \frac{l_{1}}{l_{2}}=\frac{\left(2 r_{1}\right)^{2}}{r_{1}^{2}}=\frac{4}{1}$

4

5
(c)

Breaking stress for both ropes would be same.
$\frac{T_{\max _{1}}}{\pi \times\left(\frac{1}{2}\right)^{2}}=\frac{T_{\max _{2}}}{\pi\left(\frac{3}{2}\right)^{2}}$
$\Rightarrow T_{\text {max }_{2}}=9 \times T_{\text {max }_{2}}=4500 \mathrm{~N}$
(b) has highest elasticity.
(b)

Out of the given substances, steel has greater value of Young's modulus. Therefore, steel
$\sigma=\frac{\text { Lateral strain }}{\text { Longitudinal strain }}$
Or Lateral strain $=\sigma \times$ longitudial strain
$=0.4 \times \frac{0.5}{100}=\frac{0.02}{100}$
So, percentage reduction in diameter is 0.02 .
(c)

Let L be the length of each side of cube. Initial volume $=L^{3}$. When each side decreases by 1%.
New length $L^{\prime}=L-\frac{1}{100}=\frac{99 L}{100}$
New volume $=L^{\prime 3}=\left(\frac{99 L}{100}\right)^{3}$, change in volume,
$\Delta V=L^{3}-\left(\frac{99 L}{100}\right)^{3}$
$=L^{3}\left[1-\left(1-\frac{3}{100}+\cdots\right)\right]=L^{3}\left[\frac{3}{100}\right]=\frac{3 L^{3}}{100}$
\therefore Bulk strain $=\frac{\Delta^{V}}{V}=\frac{3 L^{3} / 100}{L^{3}}=0.03$
(c)

Young's modulus $Y=\frac{m \mathrm{~g} l}{a_{1} l_{1}}$
$l_{1}=\frac{m g l}{Y \pi r^{2}}$
and $Y=\frac{m \mathrm{~g}(2 l)}{a_{2} l_{2}}=\frac{m \mathrm{~g}(2 l)}{\pi(2 r)^{2} l_{2}}$
Or $l_{2}=\frac{m \mathrm{~g} l}{2 Y \pi r^{2}}$
From Eqs. (i) and (ii), we have
$\therefore l_{1}+l_{2}=\frac{m g l}{Y \pi r^{2}}+\frac{m g l}{2 Y \pi r^{2}}=\frac{3}{2} \frac{m g l}{Y \pi r^{2}}$
(c)
$\eta=\frac{F / A}{x / L} \Rightarrow x=\frac{L}{\eta} \times \frac{F}{A}$
If η and F are constant then $x \propto \frac{L}{A}$
For maximum displacement area at which force applied should be minimum and vertical side should be maximum, this is given in the Q position of rectangular block
$Y=\frac{F l}{A_{\Delta l}}=\left(\frac{F}{\Delta l}\right) \frac{1}{A} ; k l=$ constant;
$k \times 3=k^{\prime} \times 2 \quad$ or $k^{\prime}=\frac{3 k}{2}$

$$
\begin{aligned}
Y & =\frac{F}{A} \times \frac{l}{\Delta^{l}} \text { or } F=Y A \frac{\Delta}{l} \\
& =\frac{\left.\left(5.0 \times 10^{8}\right) \times 10^{6}\right) \times\left(2 \times 10^{-2}\right)}{\left(10 \times 10^{-2}\right)}=100 \mathrm{~N}
\end{aligned}
$$

(b)
$U(R)=\frac{A}{R^{n}}-\frac{B}{R^{m}}$
The negative potential energy ($2^{\text {nd }}$ part) is the attractive

$$
\frac{\Delta^{A}}{A}=\frac{\pi \frac{d}{2} \Delta^{d}}{\pi d^{2} / 4}=2 \frac{\Delta^{d}}{d}
$$

Given $\frac{\Delta^{A}}{A} \times 100=2 \%$
$=2=2 \frac{\Delta^{d}}{d}$ or $\frac{\Delta^{d}}{d}=1 \%$
Given $\sigma=\frac{\Delta^{d / d}}{\Delta^{l / l}}=0.4$
Or $\quad \frac{\Delta^{d}}{d}=0.4 \frac{\Delta^{l}}{l}$
$\frac{\Delta^{l}}{l}=\frac{1}{0.4} \frac{\Delta^{l}}{l}$
$=2.5 \times 1 \%$
$=2.5 \%$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	A	D	B	C	B	C	C	C	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	B	B	B	D	C	D	B	A	B		

