

CLASS : XITH DATE :

SUBJECT : PHYSICS DPP NO. :10

Topic :- MECHANICAL PROPERTIES OF SOLIDS

1.	$Y = \frac{mgl}{\pi r^2 L}$ formula would give Y if mg is doubled			
	a) 2 <i>Y</i>	b) $\frac{Y}{2}$	c) <i>Y</i>	d)Zero
2.	The Poisson's ratio cannot have the value			
	a) 0.7	b) 0.2	c) 0.1	d)0.3
3.	A force of 10^3 <i>newton</i> stretches the length of a hanging wire by 1 <i>millimetre</i> . The force required to stretch a wire of same material and length but having four times the diameter by 1 <i>millimetre</i> is			
	a) $4 \times 10^3 N$	b) $16 \times 10^{3}N$	c) $\frac{1}{4} \times 10^3 N$	$d)\frac{1}{16} \times 10^3 N$
4.	Two wires of the same leng <mark>th an</mark> d same material but radii in the ratio of 1 : 2 are stretched by unequal forces to produce equal elongation. The ratio of the two forces is			
	a) 1 : 1	b)1:2	c) 2 : 3	d)1:4
5.	One litre of a gas is maintained at pressure 72 cm of mercury. It is compressed isothermally so that its volume becomes 900 cm ³ . The value of stress and strain will be respectively a) 0.106 Nm^{-2} and 0.1 b) 1.106 Nm^{-2} and 0.1			
	c) 106.62 Nm^{-2} and 0.1		d) 10662.4 Nm^{-2} and 0.1	
6.	A uniform cube is subjected to volume compression. If each side is decreased by 1%, then bulk strain is			
	a) 0.01	b)0.06	c) 0.02	d)0.03
7.	A wire of length <i>L</i> and cross-section <i>A</i> is made of material of Young's modulus <i>Y</i> . It is stretch by an amount <i>x</i> , the work done is			
	a) $\frac{YxA}{2L}$	b) $\frac{Yx^2A}{2}$	c) $\frac{Yx^2A}{2}$	d) $\frac{2Yx^2A}{2}$

a) $\frac{Yx^2A}{L}$ b) $\frac{Yx^2A}{L}$ c) $\frac{Yx^2A}{2L}$ d) $\frac{2Yx^2}{L}$

- 8. Wires *A* and *B* are made from the same material. A has twice the diameter and three times the length of *B*. If the elastic limits are not reached, when each is stretched by the same tension, the ratio of energy stored in *A* to that in *B* is

 a) 2:3
 b) 3:4
 c) 3:2
 d) 6:1
- 9. The Young's modulus of a wire of length *L* and radius *r* is *Y N/m²*. If the length and radius are reduced to *L*/2 and *r*/2, then its Young's modulus will be
 a) *Y*/2 b) *Y* c) 2*Y* d) 4*Y*
- 10. The ratio of diameters of two wires of same materials is n: 1. The length of each wire is 4 m. On applying the same load, the increase in length of thin wire will be (n > 1)
 a) n² times
 b) n times
 c) 2n times
 d) (2n + 1) times
- 11. The coefficient of linear expansion of brass and steel are α_1 and α_2 . If we take a brass rod of length l_1 and steel rod of length l_2 at 0°C, their difference in length $(l_2 l_1)$ will remain the same at a temperature if a) $\alpha_1 l_2 = \alpha_2 l_1$ b) $\alpha_1 l_2^2 = \alpha_2 l_1^2$ c) $\alpha_1^2 l_1 = \alpha_2^2 l_2$ d) $\alpha_1 l_1 = \alpha_2 l_2$
- 12. The hollow shaft is than a solid shaft of same mass, material and length.a) Less stiffb) More stiffc) Squally stiffd) None of these
- 13. A wire is stretched 1 mm by a force of 1 k N. How far would a wire of the same material and length but of four times that diameter be stretched by the same force ?
 - a) $\frac{1}{2}$ mm b) $\frac{1}{4}$ mm c) $\frac{1}{8}$ mm d) $\frac{1}{16}$ mm
- 14. Two exactly similar wires of steel and copper are stretched by equal forces. If the difference in their elongations is 0.5*cm*, the elongation (*l*) of each wire is

$$\begin{split} Y_{s}(\text{steel}) &= 2.0 \times 10^{11} N/m^{2} \\ Y_{c}(\text{copper}) &= 1.2 \times 10^{11} N/m^{2} \\ \text{a)} \ l_{s} &= 0.75 cm, \ l_{c} &= 1.25 cm \\ \text{c)} \ l_{s} &= 0.25 cm, \ l_{c} &= 0.75 cm \\ \text{d)} \ l_{s} &= 0.75 cm, \ l_{c} &= 0.25 cm \end{split}$$

15. Two wires of the same material (Young's modulus Y) and same length *L* but radii *R* and *2R* respectively are joined end to end and a weight *w* is suspended from the combination as shown in the figure. The elastic potential energy in the system is

- 16. Two wires are made of the same material and have the same volume. However, wire 1 has cross-sectional area *A* and wire 2 has cross-sectional area 3*A*. If the length of wire 1 increases by Δx on applying force *F*, how much force is needed to stretch wire 2 by the same amount? a) *F* b) $\frac{4F}{F}$ c) $\frac{6F}{F}$ d) $\frac{9F}{F}$
- 17. A spring is extended by 30 mm when a force of 1.5 N is applied to it. Calculate the energy stored in the spring when hanging vertically supporting a mass of 0.20 kg if the spring was instructed before applying the mass.
 a) 0.01 J
 b) 0.02 J
 c) 0.04 J
 d) 0.08 J
- 18. On applying a stress of $20 \times 10^8 N/m^2$ the length of a perfectly elastic wire is doubled. Its Young's modulus will be a) $40 \times 10^8 N/m^2$ b) $20 \times 10^8 N/m^2$ c) $10 \times 10^8 N/m^2$ d) $5 \times 10^8 N/m^2$
- 19. On increasing the length by 0.5 mm in a steel wire of length 2 m and area of cross-section 2 m m^2 , the force required is [Y for steel = $2.2 \times 10^{11} Nm^{-2}$] 1.1 × 10⁵N
 - a) $^{1.1} \times 10^5$ N b) 1.1×10^4 N c) 1.1×10^3 N d) 1.1×10^2 N
- 20. Which one of the following statements is correct? In the case of
 - a) Shearing stress there is change in volume
 - b) Tensile stress there is no change in volume
 - c) Shearing stress there is no change in shape
 - d) Hydraulic stress there is no change in volume