CLASS : XITh
Solutions

Topic :- MECHANICAL PROPERTIES OF SOLIDS

2

3
(a)

We know that the Poisson's ratio have the theoretical value
$-1<\sigma<\frac{1}{2}$
But practically the value of σ (Poisson's ratio) is
$0<\sigma<\frac{1}{2}$
So the Poisson's ratio cannot have the value 0.7.
(b)
$F=Y \times A \times \frac{l}{L}$
$\Rightarrow F \propto r^{2}[Y, l$ and L are constant $]$
If diameter is made four times then force required will be 16 times, i.e. $16 \times 10^{3} \mathrm{~N}$
(d)
$Y=\frac{F l}{A_{\Delta} l}$
In the given problem, Y, l and Δl are constants .
$\therefore F \propto A$
Or $F=\pi^{2}$ or $F \propto r^{2}$ or $\frac{F_{1}}{F_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}=\frac{1}{4}$
(d)

According to Boyle's law, $p_{2} V_{2}=p_{1} V_{1}$
Or $p_{2}=p_{1}\left(\frac{V_{1}}{V_{2}}\right)$
Or $p_{1}=72 \times 1000 / 900=80 \mathrm{~cm}$ of Hg .
Stress $=$ increase in pressure
$=p_{2}-p_{1}=80-72=8$
$=1066.4 \mathrm{Nm}^{-2}$
Volumetric strain $=\frac{V_{1}-V_{2}}{V_{1}}=\frac{1000-900}{1000}=0.1$

If side of the cube is L then $V=L^{3} \Rightarrow \frac{d V}{V}=3 \frac{d L}{L}$
$\therefore \%$ change in volume $=3 \times(\%$ change in length $)$
$=3 \times 1 \%=3 \%$
\therefore Bulk strain, $\frac{\Delta^{V}}{V}=0.03$
(c)

Here, $\Delta l=x ; Y=\frac{F / A}{\Delta^{l / L}}$ or $F=\frac{Y A_{\Delta} l}{L}$
The work is done from 0 to x (change in length),
So the average distance $=\frac{0+\Delta l}{2}=\frac{\Delta^{l}}{2}$
Work done $=$ Force \times distance
$=\frac{Y A_{\Delta} l}{L} \times \frac{\Delta^{l}}{2}=\frac{Y A(\Delta l)^{2}}{2 L}=\frac{Y A x^{2}}{2 L}$
(b)
$U=\frac{1}{2} F l=\frac{F^{2} L}{2 A Y} \cdot U \propto \frac{L}{r^{2}}[F$ and Y are constant $]$
$\therefore \frac{U_{A}}{U_{B}}=\left(\frac{L_{A}}{L_{B}}\right) \times\left(\frac{r_{B}}{r_{A}}\right)^{2}=(3) \times\left(\frac{1}{2}\right)^{2}=\frac{3}{4}$
(b)

Young's modulus of wire does not vary with dimension of wire. It is the property of given material
(a)

$$
Y=\frac{\frac{F}{A}}{\frac{\Delta^{l}}{l}}=\frac{F l}{A_{\Delta} l}
$$

Or $Y=\frac{F l \times 4}{\pi D^{2} \times \Delta l}$ or $\Delta l \propto \frac{1}{D^{2}}$ or $\frac{\Delta L_{2}}{\Delta L_{1}}=\frac{D_{1}^{2}}{D_{2}^{2}}=\frac{n^{2}}{1}$

- (a)

$$
\begin{equation*}
l \propto \frac{1}{Y} \Rightarrow \frac{Y_{s}}{Y_{c}}=\frac{l_{c}}{l_{s}} \Rightarrow \frac{l_{c}}{l_{s}}=\frac{2 \times 10^{11}}{1.2 \times 10^{11}}=\frac{5}{3} \tag{i}
\end{equation*}
$$

Also $l_{c}-l_{s}=0.5$
On solving (i) and (ii) $l_{c}=1.25 \mathrm{~cm}$ and $l_{s}=0.75 \mathrm{~cm}$

16

(c)
$k_{1}=\frac{Y \pi(2 R)^{2}}{L}, k_{2}=\frac{Y \pi(R)^{2}}{L}$
Equivalent $\frac{1}{k_{1}}+\frac{1}{k_{2}}=\frac{L}{4 Y \pi R^{2}}+\frac{L}{Y \pi R^{2}}$
Since, $k_{1} x_{1}=k_{2} x_{2}=w$
Elastic potential energy of the system
$U=\frac{1}{2} k_{1} x_{1}^{2}+\frac{1}{2} k_{2} x_{2}^{2}$
$U=\frac{1}{2} k_{1}\left(\frac{w}{k_{1}}\right)^{2}+\frac{1}{2} k_{2}\left(\frac{w}{k_{2}}\right)^{2}$
$=\frac{1}{2} w^{2}\left\{\frac{1}{k_{1}}+\frac{1}{k_{2}}\right\}=\frac{1}{2} w^{2}\left(\frac{5 L}{4 Y \pi R^{2}}\right)$
$U=\frac{5 w^{2} L}{8 \pi Y R^{2}}$
(d)
$A_{1} l_{1}=A_{2} l_{2}$
$\Rightarrow l_{2}=\frac{A_{2} l_{1}}{A_{1}}=\frac{A \times l_{1}}{3 A}=\frac{l}{3}$
$\Rightarrow \frac{l_{1}}{l_{2}}=3$
$\Delta x_{1}=\frac{F_{1}}{A \gamma} l_{1}$
$\Delta x_{2}=\frac{F_{2}}{3 A \gamma} l_{2}$

Here $\Delta x_{1}=\Delta x_{2}$
$\frac{F_{2}}{3 A \gamma} l_{2}=\frac{F_{1}}{A \gamma} l_{1}$
$F_{2}=3 F_{1} \times \frac{l_{1}}{l_{2}}$
$=3 F_{1} \times 3=9 F$
(c)
$K=\frac{1.5 \mathrm{~N}^{2}}{30 \times 10^{-3}}=50 \mathrm{Nm}^{-1}$
$l=\frac{0.2 \times 10}{50} \mathrm{~m}=0.04 \mathrm{~m}$
Energy stored $=\frac{1}{2} \times 0.20 \times 10 \times 0.04 \mathrm{~J}=0.04 \mathrm{~J}$
(b)

Young's modulus $=\frac{\text { stress }}{\text { strain }}$
As the length of wire get doubled therefore strain = 1

$$
\therefore Y=\text { strain }=20 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
$$

(d)
$Y=\frac{F l}{A_{\Delta} l}$ or $F=\frac{Y A \Delta l}{l}$
Or $F=\frac{2.2 \times 10^{11} \times 2 \times 10^{-6} \times 0.5 \times 10^{-3}}{2}$
$=1.1 \times 10^{2} \mathrm{~N}$
(b)

In case of shearing stress there is a change in shape without any change in volume. In case of hydraulic stress there is a change in volume without any change in shape. In case of tensile stress there is no change in volume

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	A	B	D	D	D	C	B	B	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	A	D	A	C	D	C	B	D	B		

