

CLASS : XITH SUBJECT : PHYSICS DATE : DPP NO. :1

Topic: - MECHANICAL PROPERTIES OF SOLIDS

1.	The value of Poisson's		1	24. 2	
	a) $-1 \text{ to } \frac{1}{2}$	b) $-\frac{3}{4}$ to $-\frac{1}{2}$	c) $-\frac{1}{2}$ to 1	d) 1 to 2	
2.	A 5 $metre$ long wire is fixed to the ceiling. A weight of $10~kg$ is hung at the lower end and is $1~metre$ above the floor. The wire was elongated by $1~mm$. The energy stored in the wire due to stretching is				
	a) Zero	b) 0.05 <i>joule</i>	c) 100 joule	d) 500 <i>joule</i>	
3.	If a spring is extended	to le <mark>ngth <i>l</i>, then accordi</mark>	ng to Hooke's law	2	
	a) $F = kl$	$b) F = \frac{k}{l}$	c) $F = k^2 l$	$d) F = \frac{k^2}{l}$	
4.	If in a wire of Young's a stored in its unit volum a) $0.5 YX^2$	_	strain X is produced the c) $2 YX^2$	n the potential energy d) YX^2	
5.	A steel wire of length 20 cm and uniform cross-section 1 mm ² is tied rigidly at both the ends. The temperature of the wire is altered from 40°C to 20°C. Coefficient of linear expansion of steel is $\alpha = 1.1 \times 10^{-5}$ °C ⁻¹ and Y for steel is 2.0 $\times 10^{11}$ Nm ⁻² ; the tension in the wire is				
	a) $2.2 \times 10^6 \mathrm{N}$	b) 16 N	c) 8 N	d) 44 N	
6.	A wire of length L and radius r fixed at one end and a force F applied to the other end produced an extension l . The extension produced in another wire of the same material of length $2L$ and radius $2r$ by a force $2F$, is				
	a) <i>l</i>	b) 2 <i>l</i>	c) 4 <i>l</i>	$d)\frac{l}{2}$	
7.	Then the stress on <i>B</i> is		that of B . They are stret	•	
	at Edual to that on A	ULFOUR times that on A	LULIWO times that on A	u i Haif fnaf on A	

	a) $10^{12}N/m^2$	b) $10^2 N/m^2$		d) $10^{11}N/m^2$		
9.	A wire of length L is hanging from a fixed support. The length changes to L_1 and L_2 when masses M_1 and M_2 are suspended respectively from its free end. Then L is equal to					
	a) $\frac{L_1 + L_2}{2}$	b) $\sqrt{L_1L_2}$	c) $\frac{L_1M_2 + L_2M_1}{M_1 + M_2}$	d) $\frac{L_1 M_2 - L_2 M_1}{M_2 + M_1}$		
10.	The ratio of two specific heats of gas C_p/C_v for argon is 1.6 and for hydrogen is 1.4. Adiabatic elasticity of argon at pressure P is E . Adiabatic elasticity of hydrogen will also be equal to E at the pressure					
	a) <i>P</i>	b) $\frac{8}{7}P$	c) $\frac{7}{8}P$	d) 1.4 <i>P</i>		
11.		aterial and radius have the force, the strain produce b) 1:1	=			
12.	A wire extends by 1 mr	n wh <mark>en a</mark> force is applied	d. Double the force is ap	plied to another wire of gation of the wire in mm		
	a) 8	b) 4	c) 2	d) 1		
13.	Minimum and maximu a) $-\infty$ to $+\infty$	m va <mark>lues o</mark> f Poisson's rat b) 0 to 1	tio for a metal lies betwo c) -∞ to 1	een d) 0 to 0.5		
	a) $-\infty$ to $+\infty$ A cube is compressed a should be temperature	b) 0 to 1 at 0°C equally from all si be raise to bring to back is bulk modulus of elast	c) -∞ to 1 des by an external press c to the size it had befor	d) 0 to 0.5 Sure <i>p</i> . By what amount e the external pressure		
	a) $-\infty$ to $+\infty$ A cube is compressed a should be temperature was applied ? (Given K	b) 0 to 1 at 0°C equally from all si be raise to bring to back is bulk modulus of elast	c) -∞ to 1 des by an external press c to the size it had befor	d) 0 to 0.5 Sure <i>p</i> . By what amount e the external pressure		
14.	a) $-\infty$ to $+\infty$ A cube is compressed a should be temperature was applied? (Given K coefficient of linear expan) $\frac{p}{K\alpha}$	b) 0 to 1 at 0°C equally from all si be raise to bring to back is bulk modulus of elast bansion.)	c) $-\infty$ to 1 des by an external press to the size it had before icity of the material of the c) $\frac{3\pi\alpha}{p}$ on a spherical ball, then rubber in $dyne/cm^2$ is	d) 0 to 0.5 Sure p . By what amount e the external pressure he cube and α is the d) $\frac{K}{3p}$		
14.	a) $-\infty$ to $+\infty$ A cube is compressed a should be temperature was applied? (Given K coefficient of linear expan) $\frac{p}{K\alpha}$	b) 0 to 1 at 0°C equally from all since to bring to back is bulk modulus of elast coansion.) b) $\frac{p}{3K\alpha}$	c) $-\infty$ to 1 des by an external press to the size it had before icity of the material of the c) $\frac{3\pi\alpha}{p}$ on a spherical ball, then	d) 0 to 0.5 Sure p . By what amount e the external pressure he cube and α is the d) $\frac{K}{3p}$		
14.15.	a) $-\infty$ to $+\infty$ A cube is compressed a should be temperature was applied? (Given K coefficient of linear expan) $\frac{p}{K\alpha}$ When a pressure of 100 0.01%. The bulk modula a) 10×10^{12}	b) 0 to 1 at 0°C equally from all since to bring to back is bulk modulus of elast coansion.) b) $\frac{p}{3K\alpha}$ 0 atmosphere is applied lus of the material of the b) 100×10^{12} wire is k and that of another the second	c) $-\infty$ to 1 des by an external press to the size it had before icity of the material of the c) $\frac{3\pi\alpha}{p}$ on a spherical ball, then rubber in $dyne/cm^2$ is c) 1×10^{12}	d) 0 to 0.5 Sure p . By what amount e the external pressure he cube and α is the d) $\frac{K}{3p}$		

8. When the length of a wire having cross-section area $10^{-6}m^2$ is stretched by 0.1%, then tension

in it is 100 N. Young's modulus of material of the wire is

- 17. For a constant hydraulic stress on an object, the fractional change in the object's volume $\left(\frac{\Delta^V}{V}\right)$ and its bulk modulus (B) are related as
 - a) $\frac{\Delta^V}{V} \propto B$
- b) $\frac{\Delta V}{V} \propto \frac{1}{R}$
- c) $\frac{\Delta V}{V} \propto B^2$ d) $\frac{\Delta V}{V} \propto B^{-2}$
- 18. Two rods A and B of the same material and length have their radii r_1 and r_2 respectively. When they are rigidly fixed at one end and twisted by the same couple applied at the other end, the ratio of the angle of twist at the end of A and the angle of twist at the end of B is
 - a) $\frac{r_2^4}{r_1^4}$

- 19. Young's modulus of the wire depends on
 - a) Length of the wire

b) Diameter of the wire

c) Material of the wire

- d) Mass hanging from the wire
- 20. For most materials the Young's modulus is n times the rigidity modulus, where n is
 - a) 2

b)3

c) 4

d)5