CLASS : XITh
Solutions
SUBJECT : PHYSICS
DATE:

Topic :- MECHANICAL PROPERTIES OF SOLIDS

1

3

4

5

6
(b)

Let the change in position of the body due to additional force is x.
So, $F=\frac{1}{2} k x$
$\therefore x=\frac{2 F}{k}$
(a)
$l=\frac{F L}{A Y} \therefore l \propto \frac{1}{r^{2}}[Y, L$ and F are constant $]$
i.e. for the same load, thickest wire will show minimum elongation. So graph D represent the thickest wire
(a)
$l=\frac{L^{2} d g}{2 Y}=\frac{(10)^{2} \times 1500 \times 10}{2 \times 5 \times 10^{8}}=15 \times 10^{-4} \mathrm{~m}$
(d)
$\tau_{x}=\frac{\pi \eta r^{4}}{2 l} \theta_{x}$ and $\tau_{y}=\frac{\pi \eta(2 r)^{4}}{2 l} \theta_{y}$
Since, $\tau_{x}=\tau_{y}$,
$\therefore \theta_{x}=16 \theta_{y}$ or $\frac{\theta_{x}}{\theta_{y}}=16$
(a)
$F=-5 x-16 x^{3}=-\left(5+16 x^{2}\right) x=-k x$
$\therefore k=5+16 x^{2}$
Work done, $W=\frac{1}{2} k_{2} x_{2}^{2}-\frac{1}{2} k_{1} x_{1}^{2}$
$=\frac{1}{2}\left[5+16(0.2)^{2}\right](0.2)^{2}-\frac{1}{2}\left[5+16(0.1)^{2}\right](0.1)^{2}$
$=2.82 \times 4 \times 10^{-2}-2.58 \times 10^{-2}=8.7 \times 10^{-2} J$
(b)

When a wire is stretched work is done against the interatomic forces. This work is stored in the wire in the form of elastic potential energy.
$W=\frac{1}{2} \times$ stress \times strain \times volume of wire

Also, when strain in small, ratio of longitudinal stress to corresponding longitudinal strain is called Young's modulus of material of body.
$Y=\frac{\text { longitudinal stress }}{\text { longitudinal strain }}$
$\therefore W=\frac{1}{2} \times$ stress $\times \frac{\text { stress }}{\mathrm{Y}} \times$ volume
$=\frac{(\text { stress })^{2} \times \text { volume }}{2 Y}$
(b)

According the Hooke's law modulus of elasticity E.
$=\frac{\text { Stress }}{\text { Strain }}=$ Constant
Hence, if stress is increased, then the ratio of stress to strain remains constant.

Assume original length of spring $=l$
$m g=k x$
$k_{1}(60)=k_{2}(l-60)=k l$
$\therefore \quad m \mathrm{~g}=k_{1}=(7.5)$ according to question
And $m \mathrm{~g}=k_{2}=(5.0)$
$\therefore \quad k_{1}=\frac{k l}{60}, k_{2}=\frac{k l}{l .60}$
$\frac{k_{1}}{k_{2}}=\frac{5.0}{7.5}=\frac{l_{-} 60}{60}$
$\Rightarrow \frac{2}{3}=\frac{l-60}{60}$
$\therefore l=100 \mathrm{~cm}$
And $k x=k_{1} \times 7.5$
$k x=\left(\frac{5 k}{3}\right) \times 7.5$
$\therefore x=12.5 \mathrm{~cm}$
(c)
$K=\frac{F}{l}$ and $W=\frac{1}{2} F l=\frac{1}{2} K l \times l=\frac{1}{2} K l^{2}$
(c)

For twisting, Angle of shear $\phi \propto \frac{1}{L}$
i.e. if L is more then ϕ will be small
(b)
$2 \pi \sqrt{\frac{m}{k}}=0.6 \quad$...(i) and $2 \pi \sqrt{\frac{m+m^{\prime}}{k}}=0.7$
Dividing (ii) by (i), we get $\left(\frac{7}{6}\right)^{2}=\frac{m+m^{\prime}}{m}=\frac{49}{36}$
$\frac{m+m^{\prime}}{m}-1=\frac{49}{36}-1 \Rightarrow \frac{m^{\prime}}{m}=\frac{13}{36}$
$\Rightarrow m^{\prime}=\frac{13 m}{36}$
Also $\frac{k}{m}=\frac{4 \pi^{2}}{(0.6)^{2}}$
Desired extension $=\frac{m^{\prime} g}{k}=\frac{13}{36} \times \frac{m g}{k}$
$\frac{13}{36} \times 10 \times \frac{0.36}{4 \pi^{2}}=3.5 \mathrm{~cm}$
(a)
$L=\frac{P}{d g}=\frac{10^{6}}{3 \times 10^{3} \times 10}=\frac{100}{3}=34 \mathrm{~m}$
(d)

Equal stress
$\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \Rightarrow \frac{F_{1}}{F_{2}}=\frac{0.1}{0.2}=\frac{1}{2}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	A	A	A	D	A	B	B	C	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	A	A	A	C	C	B	A	D	B	

