CLASS : XITH DATE :

DPPP DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : PHYSICS DPP NO. : 4

Topic :- MECHANICAL PROPERTIES OF SOLIDS

1 **(b)**

Let the change in position of the body due to additional force is x.

So,
$$F = \frac{1}{2}k x$$

 $\therefore x = \frac{2F}{k}$

(a)

3

 $l = \frac{FL}{AY} \therefore l \propto \frac{1}{r^2} [Y, L \text{ and } F \text{ are constant}]$

i.e. for the same load, thickest wire will show minimum elongation. So graph *D* represent the thickest wire

4 (a)
$$l = \frac{L^2 dg}{2W} = \frac{(10)^2}{2}$$

$$l = \frac{L^2 dg}{2Y} = \frac{(10)^2 \times 1500 \times 10}{2 \times 5 \times 10^8} = 15 \times 10^{-4} m$$
(d)

$$\tau_x = \frac{\pi \eta r^4}{2l} \theta_x \text{ and } \tau_y = \frac{\pi \eta (2r)^4}{2l} \theta_y$$
Since, $\tau_x = \tau_y$,

 $\therefore \ \theta_x = 16\theta_y \text{ or } \frac{\theta_x}{\theta_y} = 16$

(a)

$$F = -5x - 16x^{3} = -(5 + 16x^{2})x = -kx$$

$$\therefore k = 5 + 16x^{2}$$
Work done, $W = \frac{1}{2}k_{2}x_{2}^{2} - \frac{1}{2}k_{1}x_{1}^{2}$

$$= \frac{1}{2}[5 + 16(0.2)^{2}](0.2)^{2} - \frac{1}{2}[5 + 16(0.1)^{2}](0.1)^{2}$$

$$= 2.82 \times 4 \times 10^{-2} - 2.58 \times 10^{-2} = 8.7 \times 10^{-2}J$$

7

(b)

When a wire is stretched work is done against the interatomic forces. This work is stored in the wire in the form of elastic potential energy.

$$W = \frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume of wire}$$

Also, when strain in small, ratio of longitudinal stress to corresponding longitudinal strain is called Young's modulus of material of body.

$$Y = \frac{\text{longitudinal stress}}{\text{longitudinal strain}}$$
$$\therefore W = \frac{1}{2} \times \text{stress} \times \frac{\text{stress}}{Y} \times \text{volume}$$
$$= \frac{(\text{stress})^2 \times \text{volume}}{2Y}$$

8

(b)

(c)

According the Hooke's law modulus of elasticity *E*.

$$=\frac{\text{Stress}}{\text{Strain}}=\text{Constant}$$

Hence, if stress is increased, then the ratio of stress to strain remains constant.

Work done is stretching a wire,

$$U = \frac{1}{2} \times \frac{YAl^2}{L}$$

= $\frac{1}{2} \times \frac{2 \times 10^{11} \times 3 \times 10^{-6} \times (1 \times 10^{-3})^2}{4}$
= 0.075 J
(a)
Y

10

$$\eta = \frac{Y}{2(1+\sigma)}, \quad \sigma = 0$$

$$\therefore \ \eta = \frac{Y}{2} = \frac{6 \times 10^{12}}{2} = 3 \times 10^{12} \,\mathrm{Nm^{-2}}$$

11

(a)

(a)

$$F = 2000N, L = 6m, l = 0.5cm, A = 10^{-6}m^{2}$$
$$Y = \frac{FL}{Al} = \frac{2000 \times 6}{10^{-6} \times 0.5 \times 10^{-2}} = 2.35 \times 10^{12} N/m^{2}$$

Energy density $=\frac{1}{2}$ stress × strain = $\frac{1}{2}$ stress × $\frac{\text{stress}}{Y} = \frac{(\text{stress})^2}{2Y} \propto \frac{1}{D^4}$ Now, $\frac{u_A}{u_B} = \frac{D_B^4}{D_A^4} = (2)^4 = 16$

13

If (*A*) is the area of cross-section and *l* is the length of rope, the mass of rope, $m = \frac{Al}{\rho}$. As the weight of the rope acts at the mid-point of the rope.

So,
$$Y = \frac{mg}{A} \times \frac{(l/2)}{\Delta l}$$

$$\Delta l = \frac{mgl}{2AY} = \frac{Al\rho gl}{2AY} = \frac{g\rho l^2}{2AY}$$
Or $\Delta l = \frac{9.8 \times 1.5 \times 10^3 \times 8^2}{2 \times 5 \times 10^6} = 9.6 \times 10^2 \text{m}$
(a)

14

Assume original length of spring = l

$$mg = kx$$

 $k_1(60) = k_2(l \cdot 60) = kl$
 $\therefore mg = k_1 = (7.5)$ according to question
And $mg = k_2 = (5.0)$
 $\therefore k_1 = \frac{kl}{60}, k_2 = \frac{kl}{l.60}$
 $\frac{k_1}{k_2} = \frac{5.0}{7.5} = \frac{l.60}{60}$
 $\Rightarrow \frac{2}{3} = \frac{l.60}{60}$
 $\Rightarrow l = 100 \text{ cm}$
And $kx = k_1 \times 7.5$
 $kx = (\frac{5k}{3}) \times 7.5$
 $\therefore x = 12.5 \text{ cm}$
15 (c)
For twisting, Angle of shear $\phi \propto \frac{1}{L}$
 $i.e. if L is more then ϕ will be small
17 (b)
 $2\pi \sqrt{\frac{m}{k}} = 0.6$...(i) and $2\pi \sqrt{\frac{m+m'}{k}} = 0.7$ (ii)
Dividing (ii) by (i), we get $\binom{7}{6}^2 = \frac{m+m'}{m} = \frac{49}{36}$
 $\frac{m+m'}{m} \cdot 1 = \frac{49}{36} \cdot 1 \Rightarrow \frac{m'}{m} = \frac{13}{36}$
 $\Rightarrow m' = \frac{13m}{36}$
Also $\frac{k}{m} = \frac{4n^2}{(0.6)^2}$
Desired extension $= \frac{m'g}{k} = \frac{13}{36} \times \frac{mg}{k}$
 $\frac{13}{36} \times 10 \times \frac{0.36}{4\pi^2} = 3.5 \text{ cm}$
18 (a)
 $L = \frac{P}{dg} = \frac{10^6}{3 \times 10^3 \times 10} = \frac{100}{3} = 34m$
19 (d)
Equal stress
 $\frac{F_1}{A_1} = \frac{F_2}{A_2} \Rightarrow \frac{F_1}{F_2} = \frac{0.1}{0.2} = \frac{1}{2}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	A	A	А	D	A	В	В	С	А
Q.	11	12	13	14	15	16	17	18	19	20
A.	А	A	A	A	С	С	В	А	D	В

