DPPP DAILY PRACTICE PROBLEM

Class : XIIth Date :

(b)

Solutions

Subject : PHYSICS DPP No. : 9

Topic :- MAGNETISM AND MATTER

1

Pole strength = $m = \frac{M}{l}$. When the wire is bent at its middle point *O* at 60°, then as is clear from figure.

 $60^{\circ} + \theta + \theta = 180^{\circ}$ $2\theta = 180^{\circ} - 60^{\circ} = 120^{\circ},$ $\therefore OAB \text{ is an equilateral triangle.}$ $\therefore AB = 2l' = l/2$ New magnetic moment $M' = m(2l') = \frac{ml}{2} = \frac{M}{2}$

2

(d)

Let α be the angle which one of the planes make with the magnetic meridian. The other plane makes an angle $(90^\circ - \alpha)$ with it. The components of *H* in these planes will be $H \cos \alpha$ and $H \sin \alpha$ respectively. If ϕ_1 and ϕ_2 are the apparent dips in these two planes, then

$$\tan \phi_{1} = \frac{V}{H \sin \alpha}, i. e., \sin \alpha = \frac{V}{H \tan \phi_{1}} \dots (i)$$

Squaring and adding (i) and (ii), we get $\cos^2 \alpha + \sin^2 \alpha = \left(\frac{V}{H}\right)^2 \left(\frac{1}{\tan^2 \phi_1} + \frac{1}{\tan^2 \phi_2}\right)$ *i.e.*, $1 = \frac{V^2}{H^2} [\cot^2 \phi_1 + \cot^2 \phi_2]$ or $\frac{H^2}{V^2} = \cot^2 \phi_1 + \cot^2 \phi_2$, *i.e.*, $\cot^2 \phi = \cot^2 \phi_1 + \cot^2 \phi_2$

3

4

5

8

This is the required result
(c)

$$T_1 = 2\pi \sqrt{\frac{I}{MV}}$$

 $T_2 = 2\pi \sqrt{\frac{I}{MH}}$
 $\frac{T_2}{T_1} = \sqrt{\frac{V}{H}} = \sqrt{\tan \theta}$
or $\tan \theta = \left(\frac{T_2}{T_1}\right)^2 = \left(\frac{2}{2}\right)^2 = 1$
 $\theta = 45^\circ$
(a)
 $B_H = 0.3 \text{ oersted}, I = 0.6 \text{ oersted}$
We have $B_H = I \cos \phi \Rightarrow \cos \phi = \frac{B_H}{I} = \frac{0.3}{0.6} = \frac{1}{2}$
 $\therefore \phi = 60^\circ$
(d)
 $B_2 \longrightarrow B_2 \longrightarrow B_1$
 $k \leftarrow 0.1m \leftarrow s \leftarrow 0.1m \leftarrow s \leftarrow 0.1m \leftarrow s$
From figure $B_{net} = \sqrt{Ba^2 + Be^2}$
 $= \sqrt{\left(\frac{\mu_0}{4\pi} \cdot \frac{2M}{d^3}\right)^2 + \left(\frac{\mu_0}{4\pi} \cdot \frac{M}{d^3}\right)^2}$
 $= \sqrt{5} \cdot \frac{\mu_0}{4\pi} \cdot \frac{M}{d^3} = \sqrt{5} \times 10^{-7} \times \frac{10}{(0.1)^3} = \sqrt{5} \times 10^{-3} \text{ tesla}$
(d)
In Fig. (a), at neutral point P,
 $W \longrightarrow \int_{s}^{N} \frac{1}{s} = W \longrightarrow \int_{s}^{N} \frac{1}{s} = V$

$$B_{H} = \frac{\mu_{0}}{4\pi} \left(\frac{M}{d^{3}}\right)$$

In Fig. (b)

Net magnetic induction at P = resultant of $\frac{\mu_0}{4\pi} \frac{2M}{d^3} = 2B_H$ along horizontal and B_H along vertical = $\sqrt{(2B_H)^2 + (B_H)^2} = \sqrt{5}B_H$ (d) $T' = \frac{T}{n} \Rightarrow T' = \frac{2}{2} = 1sec$ (c) $R = \frac{H}{\cos\delta} = \frac{0.50}{\cos 30^\circ} = \frac{0.50 \times 2}{\sqrt{3}} = \frac{1}{\sqrt{3}}$ (c)

When a changing magnetic flux is applied to a bulk piece of conducting material then circulating current is called eddy currents are induced in material.

13 **(c)**

9

10

11

Time period,
$$T = 2\pi \sqrt{\frac{I}{MB}}$$

T = 2s, $I' = \frac{I}{2}$, $M' = \frac{M}{2}$

$$\therefore \quad T' = T$$
$$\implies T' = 2s$$
(c)

$$T = 2\pi \sqrt{\frac{1}{MB_H}} \Rightarrow T \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{M_A}{M_B} = \left(\frac{T_B}{T_A}\right)^2 = \frac{4}{1}$$

16

(c)

(d)

15

Electromagnets are made of soft iron because soft iron has high permeability and low retentivity

18

Time period of magnet is

$$T = 2\pi \sqrt{\frac{I}{MB_H}}$$

Or $M = \frac{4\pi^2 I}{T^2 B_H}$
Or $M = \frac{4 \times (3.14)^2 \times 49 \times 10^{-2}}{(8.8)^2 \times 0.5 \times 10^{-4}}$

$$Or M = 5000 A - m^2$$

20 (a)
Flux =
$$B \times A$$
; $\therefore B = \frac{Flux}{A} = weber/m^2$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	D	С	А	D	D	С	D	D	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	А	C	D	C	С	C	D	D	А

