

Class : XIIth

Date :

Subject : PHYSICS

DPP No. : 5

Topic:-MAGNETISM AND MATTER

1.	A vibration magnetometer placed in magnetic meridian has a small bar magnet. The magnet executes oscillations with a time period of 2 sec in earth's horizontal magnetic field of 24 microtesla. When a horizontal field of 18 microtesla is produced opposite to the earth's field by				
		ring wire, the new time p	=		
	a) 4 <i>s</i>	b) 1 <i>s</i>	c) 2 <i>s</i>	d) 3 <i>s</i>	
2.	A bar magnet is situated on a table along east-west direction in the magnetic field of earth. The				
	number of neutral poir	nts, where the magnetic	field is zero, are		
	a) 2	b) 0	c) 1	d) 4	
3.	The magnetic susceptibility <mark>of a material of a</mark> rod is 499. The absolute permeability of vacuum				
	is $4\pi imes 10^{-7}$ HM ⁻¹ . The absolute permeability of the material of a road is				
	a) $\pi \times 10^{-4} \text{HM}^{-1}$	b) $2\pi \times 10^{-4} \text{ HM}^{-1}$	c) $3\pi \times 10^{-4} \text{ HM}^{-1}$	d) $4\pi \times 10^{-4} \text{ HM}^{-1}$	
4.	A frog can be levitated	in magnetic field produ	ced by a current in a ver	tical solenoid placed	
	below the frog. This is poss <mark>ible b</mark> ecause the body of the frog behaves as				
	a) Paramagnetic	b) <mark>Diama</mark> gnetic	c) Ferromagnetic	d) Anti-ferromagnetic	
5.	A short bar magnet pla	iced with its axis at 30° v	with a uniform external	magnetic field of 0.16	
	tesla experiences a torque of magnitude 0.032 J. The magnetic moment of bar magnet will be				
	a) 0.23 J/T	b) 0.40 J/T	c) 0.80 J/T	d) Zero	
6.	Which of the following is represented by the area enclosed by a hysteresis loop (<i>B-H</i> curve)?				
	a) Permeability		b) Retentivity		
	•	unit volume in the	•		
	sample		, ,		
7.	The magnetic potential at a point on the axial line of a bar magnet of dipole moment <i>M</i> is <i>V</i> .				
	What is the magnetic potential due to a bar magnet of dipole moment $\frac{M}{4}$ at the same point				
	1				
	a) 4 V	b) 2 <i>V</i>	c) $\frac{V}{2}$	$d)\frac{V}{4}$	
8.	A wire of length <i>L</i> metre carrying current <i>i</i> , ampere is bent in the form of a circle. What is the magnitude of magnetic of magnetic dipole moment?				
	a) $iL^2/4\pi$	b) $i^2L^2/4\pi$	_	d) $iL^2/8\pi$	
9.		, ,	, ,	oreadths are equal. Pole	
	strength of each part is				
	a) <i>m</i>	b) <i>m/2</i>	c) <i>m/4</i>	d) <i>m/8</i>	
	· <i>y</i> ···	<i>yy</i> -	- , , -	· <i>y</i> · <i>y</i> ·-	

10.	To shield an instrument from external magnetic field, it is placed inside a cabin made of				
	a) Wood	b) Ebonite	b) Ebonite		
	c) Iron	d) Diamagnetic substa	d) Diamagnetic substance		
11.	The magnetic susceptibility of any paramagnetic material changes with absolute temperature ${\cal T}$				
	as				
	a) Directly proportional to T	b) Remains constant	b) Remains constant		
	c) Inversely proportional to T	d) Exponentially decay	d) Exponentially decaying with T		
12.	Magnetic susceptibility of a diamagnetic substance				
	a) Decreases with temperature	b) Is not affected by to	b) Is not affected by temperature		
	c) Increases with temperature	d) First increase then	d) First increase then decrease with		
	temperature				
13.	A very small magnet is placed in the magnetic meridian with its south pole pointing north. The				
	null point is obtained 20 cm away from the centre of the magnet. If the earth's magnetic field				
	(horizontal component) at this point is $0.3 g$				
	a) $8.0 \times 10^2 e.m.u$ b) $1.2 \times 10^3 e.m.u$		d) $3.6 \times 10^3 e. m. u$		
	Lines which represent places of constant an	· .			
	a) Isobaric lines b) Isogonic lines	c) Isoclinic lines	d) Isodynamic lines		
	The hysteresis cycle for the material of a transformer core is				
	a) Short and wide b) Tall and narrow	c) Tall and wide	d) Short and narrow		
16.	A magnet of magnetic moment 20 CGS units is freely suspended in a uniform magnetic field of				
	intensity 0.3 CGS units. The amount of work	done in deflecting it by a	n angle of 30° in CGS		
	units is		N 0		
	a) 6 b) $3\sqrt{3}$	c) $3(2-\sqrt{3})$	d)3		
17.	Magnetic lines of force due to a bar magnet do not intersect because				
	a) A point always has a single net magnetic field				
	b) The lines have similar ch <mark>arges</mark> and so repel each other				
	c) The lines always diverge from a single point				
4.0	d) The lines need magnetic lenses to be made to intersect				
18.	The angle of dip at a place is 37° and the vertical component of the earth's magnetic field is				
	6×10^{-5} T. The earth's magnetic field at thi				
	a) $7 \times 10^{-5} \text{ T}$ b) $6 \times 10^{-5} \text{ T}$	c) $5 \times 10^{-5} \text{ T}$	d) 10^{-4} T		
19.	Hysteresis loss is minimized by using	1201 11: 6			
	a) Alloy of steel	b) Shell type of core	, , , , , , , , , , , , , , , , , , , ,		
	c) Thick wire which has low resistance d) Mu metal				
20.	The distance of two points on the axis of a magnet from its centre is 10 cm and 20 cm				
	respectively. The ratio of magnetic intensity at these points is 12.5 : 1. The length of the magnet				
	will be	a) 10 am	d) 20 cm		
	a) 5 cm b) 25 cm	c) 10 <i>cm</i>	d) 20 <i>cm</i>		