Class: XIIth

Date :

Solutions

Topic :- MAGNETISM AND MATTER

1
(a)

Torque, $\quad \tau=M B \sin \theta$
$\Rightarrow \quad \tau=(m L) B \sin \theta$
$\left.\Rightarrow 25 \times 10^{-6}=\left(m \times 5 \times 10^{-2}\right) \times 510^{-2} \times \sin 30^{\circ}\right)$
$\Rightarrow \quad m=2 \times 10^{-2} \mathrm{~A}-\mathrm{m}$

2

4

5
(c)

Dipole is the ultimate individual unit of magnetism in any magnet.
(b)

Current, $I=B_{H} \times \frac{2 r \tan \theta}{n \mu_{0}}$
$=4 \times 10^{-5} \times \frac{2 \times 0.1 \times \tan 60^{\circ}}{10 \times 4 \pi \times 10^{-7}}=1.1 \AA$
(a)

Along the axis of magnet $B_{a}=\frac{2 M}{X^{3}}=200$ gauss
$\Rightarrow B_{a}=\frac{M}{X^{3}}=100$ gauss
(c)

Diamagnetic materials have negative susceptibility. Thus, (c) is wrongly stated.
(c)

For paramagnetic materials, the magnetic susceptibility gives information on the molecular dipole moment and hence on the electronic structure of the molecules in the material. The paramagnetic contribution to the molar magnetic susceptibility of a material, X is related to the molecular magnetic moment M by the Curie relation
$X=$ constant $\times \frac{M}{T} \Rightarrow X \propto \frac{1}{T}$

8

9
(d)
$B_{1}=\frac{2 M}{x^{3}}$ and $B_{2}=\frac{M}{y^{3}}$
As $B_{1}=B_{2}$
Hence $\frac{2 M}{x^{3}}=\frac{M}{y^{3}}$ or $\frac{x^{3}}{y^{3}}=2$ or $\frac{x}{y}=2^{1 / 3}$
(b)
$B=\frac{m}{d^{2}}$ in C.G.S. system
(c)

Net magnetic field at mid point $P, B=B_{N}+B_{S}$
where $B_{N}=$ magnetic field due to N-pole
$B_{S}=$ magnetic field due to S-pole

$B_{N}=B_{S}=\frac{\mu_{0}}{4 \pi} \frac{m}{r^{2}}$
$=10^{-7} \times \frac{0.01}{\left(\frac{0.1}{2}\right)^{2}}=4 \times 10^{-7} T$

$$
\therefore B_{n e t}=8 \times 10^{-7} T
$$

(c)

Here, $2 l=20 \mathrm{~cm} \Rightarrow l=10 \mathrm{~cm}, d=40 \mathrm{~cm}$.
As neutral point, $H=B=\frac{\mu_{0}}{4 \pi} \frac{2 M d}{\left(d^{2}-l^{2}\right)^{2}}$
$3.2 \times 10^{-5}=\frac{10^{-7} \times 2 M(0.4)}{15 \times 15 \times 10^{-4}}$
$\therefore M=\frac{3.2 \times 15 \times 15 \times 10^{-4} \times 10^{-5}}{0.8 \times 10^{-7}}=9$
$m=\frac{M}{2 l}=\frac{9}{0.2}=45 \mathrm{~A}-\mathrm{m}$
(b)

When magnet are placed perpendicular to each other then,
Resultant magnetic moment

$$
M^{\prime}=\sqrt{M_{1}^{2}+M_{2}^{2}}
$$

Here, $M_{1}=M_{2}=M$
So, $\quad M^{\prime}=M \sqrt{2}=m l \sqrt{2}$
(c)

At neutral point
$\left|\begin{array}{c}\text { Magnetic field due } \\ \text { to magnet }\end{array}\right|=\left|\begin{array}{c}\text { Magnetic field due } \\ \text { to earth }\end{array}\right|$
$\frac{\mu_{0}}{4 \pi} \cdot \frac{2 M}{d^{3}}=5 \times 10^{-5} \Rightarrow 10^{-7} \times \frac{2 \times 6.75}{d^{3}}=5 \times 10^{-5}$
$\Rightarrow d=0.3 \mathrm{~m}=30 \mathrm{~cm}$
(c)

When two identical bar magnets are held perpendicular to each other.
$M_{1}=\sqrt{M^{2}+M^{2}}=M \sqrt{2}, I_{1}=I$
$T_{1}=2^{5 / 4} \mathrm{~s}, T_{2}=$?
$M_{2}=M$ (as one magnet is removed)
$I_{2}=I_{1} / 2$
$\frac{T_{2}}{T_{1}}=\sqrt{\frac{I_{2}}{M_{2}} \frac{M_{1}}{I_{1}}}=\sqrt{\frac{1}{2} \cdot \frac{M \sqrt{2}}{M}}=\left(\frac{1}{\sqrt{2}}\right)^{1 / 2}$
$=\frac{1}{2^{1 / 4}}$
$T_{2}=T_{1} \times \frac{1}{2^{1 / 4}}=2^{5 / 4} \times \frac{1}{2^{1 / 4}}=2 \mathrm{~s}$
(b)

Magnetic intensity on end side-on position is twice than broad side on position

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	C	B	B	A	C	C	D	B	A			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	C	C	B	D	C	C	A	C	B			

