


Class: XIIth **Subject: PHYSICS DPP No.: 1** Date:

Topic :- MAGNETISM AND MATTER

The $\chi - 1/T$ graph for an alloy of paramagnetic nature is shown in fig. the curie constant is

- a) 57 K
- b) $2.8 \times 10^{-3} K$
- c) 570 K
- d) $17.5 \times 10^{-3} K$
- 2. If a diamagnetic substance is brought near north or south pole of a bar magnet, it is
 - a) Attracted by the poles
 - b) Repelled by the poles
 - c) Repelled by the north pole and attracted by the south pole
 - d) Attracted by the north pole and repelled by the south pole
- 3. If a bar magnet of length /and cross-sectional area *A* is cut into two equal parts as shown in figure, then the pole strength of each pole becomes

- a) Half
- b) Double
- c) One-fourth
- d) Four time
- 4. A bar magnet A of magnetic moment M_A is found to oscillate at a frequency twice that of

magnet B of magnetic moment M_B when placed in a vibrating magneto-meter. We may say

that

- a) $M_A = 2M_B$
- b) $M_A = 8M_B$ c) $M_A = 4M_B$ d) $M_B = 8M_A$

5.	The magnetic lines of force inside a bar magnet a) Are from north-pole to south-pole of the magnet b) Do not exist c) Depend upon the area of cross-section of the bar magnet d) Are from south-pole to north-pole of the magnet								
6.	The magnet can be completely demagnetized by								
	a) Breaking the magnet		b) Heating it slightly						
	c) Droping it into ice cold water		d) A reverse field of appropriate strength						
7.			uniform field H. If magnet makes an angle of 30°						
· ·	with field, the torque acting on the magnet is								
	-		MH	МН					
	a) <i>MH</i>	b) $\frac{MH}{2}$	c) $\frac{MH}{3}$	$d)\frac{MH}{4}$					
8.	A current carrying small loop behaves like a small magnet. If <i>A</i> be its area and <i>M</i> its magnetic moment, the current in the loop will be								
	a) <i>M/A</i>	b) <i>A/M</i>	c) <i>MA</i>	$d)AM^2$					
9. Nickel shows ferromagnetic property at room temperature. If the temperature is increase beyond Curie temperature, then it will show									
	a) Paramagnetism		b) Anti-ferromagnetism						
	c) No magnetic property d) Diamagnetism								
10.	Force between two identical short bar magnets whose centers are r metre apart is 8.1 N, when								
	their axes are along the same line. If separation is increased to $3r$ and the axis are rearranged								
	perpendicularly, the force b <mark>etwe</mark> en the <mark>m wo</mark> uld become								
	a) 2.4 N	b) 1.2 N	c) 0.1 N	d) 1.15 N					
11.	A magnet is parallel to a	un <mark>iform</mark> magnetic field	l. If it is rotated by 60° ,	the work done is 0.8 <i>J</i> .					
	How much work is done in <mark>movi</mark> ng it 30° further								
	a) $0.8 \times 10^7 erg$	b) 0.4 <i>J</i>	c) 8 <i>J</i>	d) 0.8 <i>erg</i>					
12.	The magnetic susceptibi	ility is negative for							
	a) Paramagnetic materia	als	b) Diamagnetic materi	als					
	c) Ferromagnetic materials		d) Paramagnetic and ferromagnetic materials						
13.	The magnetic moment of	of a magnet of length 10	cm and pole strength	4.0 <i>Am</i> will be					
	a) $0.4 Am^2$	b) $1.6 Am^2$	c) $20 Am^2$	d) $8.0 Am^2$					
14.	Before using the tangen	t galvanometer, its coil	is set in						
	a) Magnetic meridian (or vertically north south)								
	b) Perpendicular to magnetic meridian								
c) At angel of 45° to magnetic meridian									
	d) It does not require an								
	,	, ,							
15.	A vibration magnetometer consists of two identical bar magnets placed one over the other such that they are perpendicular and bisect each other. The time period of oscillation in a horizontal magnetic field is $2^{5/4}$ second. One of the magnets is removed and if the other magnet oscillates in the same field, then the time period in second is a) $2^{1/4}$ b) $2^{1/2}$ c) 2 d) $2^{5/4}$								
	aj 2 ^{-/ -}	υ, ∠-′ -	CJ 4	u) 2 ^{-/}					

16.	A copper rod is suspended a non homogenous magnetic field region. The rod when in equilibrium will align itself							
	a) In the region where magnetic field is strongest			wea	b) In the region where magnetic field is weakest and parallel to direction of magnetic field there			
	c) In the direction in which it was originally suspended			wea	 d) In the region where magnetic field is weakest and perpendicular to the direction of magnetic field there 			
17.	The force between two magnetic poles is F . If the distance between the poles and pole							
	strengths of each pole are doubled, then the force experienced is							
	a) <i>2F</i>	$\left(\frac{F}{2}\right)$		c) $\frac{F}{A}$		d) <i>F</i>		
		L		7				
18.	There is no couple acting when two bar magnets are placed coaxially separated by a distance because							
	a) There are no forces on the poles							
	b) The force are parallel and their lines of action do not coincide							
	c) The forces are perpendicular to each other							
10	d) The forces act along the same line The magnetic force required to demagnetize the material is							
19.	The magnetic force requir	rea to aem	agnetize	tne mate	riai is			
	a) Retaintivity b)	Coercivity		c) Ene	ergy loss	d) Hysteresis		
20.	The points <i>A</i> and <i>B</i> are situated perpendicular to the axis of 2 cm long bar magnet at large							
	distances x and $3x$ from the centre on opposite sides. The ratio of magnetic fields at A and B							
	will be approximately equ	ıal to						
	a) 27:1 b)	1:27		c) 9 : 1	1	d) 1 : 9		