Topic :- KINETIC THEORY

(c)
$V \propto T \Rightarrow \frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}} \Rightarrow \frac{V}{2 V}=\frac{(273+27)}{T_{2}}=\frac{300}{T_{2}}$
$\Rightarrow T_{2}=600 \mathrm{~K}=327^{\circ} \mathrm{C}$
(a)
$C_{P}-C_{V}=R=2 \cdot \frac{\mathrm{cal}}{g-\mathrm{mol}-K}$
Which is correct for option (a) and (b). Further the ratio $\frac{C_{P}}{C_{V}}(=\gamma)$ should be equal to some standard value corresponding to that of either, mono, di, or triatomic gases. From this point of view option (a) is correct because $\left(\frac{C_{p}}{C_{V}}\right)_{\text {mono }}=\frac{5}{3}$

7
(b)
$(\Delta Q)_{P}=\mu C_{P} \Delta T$ and $(\Delta Q)_{V}=\mu C_{V} \Delta T$
$\Rightarrow \frac{(\Delta Q)_{V}}{(\Delta Q)_{P}}=\frac{C_{V}}{C_{P}}=\frac{\frac{3}{2} R}{\frac{5}{2} R}=3 / 5$

$$
\begin{aligned}
& {\left[\because\left(C_{V}\right)_{\text {mono }}=\frac{3}{2} R,\left(C_{P}\right)_{\text {mono }}=\frac{5}{2} R\right]} \\
& \Rightarrow(\Delta Q)_{V}=\frac{3}{5} \times(\Delta Q)_{P}=\frac{3}{5} \times 210=126 \mathrm{~J}
\end{aligned}
$$

(d)

Root mean square velocity of gas molecules
or

$$
\begin{aligned}
& v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}} \\
& v_{\mathrm{rms}} \propto \frac{1}{\sqrt{M}} \\
& \frac{v_{0_{3}}}{v_{\mathrm{O}_{2}}}=\sqrt{\frac{M_{\mathrm{O}_{2}}}{M_{\mathrm{O}_{3}}}}
\end{aligned}
$$

Here, $M_{0_{2}}=32, \quad M_{03}=48$

$$
\therefore \quad \frac{v_{03}}{v_{02}}=\sqrt{\frac{32}{48}}=\frac{\sqrt{2}}{\sqrt{3}}
$$

(d) $v_{r m s}=\sqrt{\frac{3 R T}{M}} \Rightarrow v_{r m s} \propto \frac{1}{\sqrt{M}}$
(c)

For mono atomic gas, C_{V} is constant $\left(\frac{3}{2} R\right)$. It doesn't vary with temperature
(a)
$P V=\mu R T=\frac{m}{M} R T$
$\Rightarrow \frac{P V}{T} \propto \frac{1}{M} \quad[\because M=$ molecule mass $]$
From graph $\left(\frac{P V}{T}\right)_{A}<\left(\frac{P V}{T}\right)_{B}<\left(\frac{P V}{T}\right)_{C}$
$\Rightarrow M_{A}>M_{B}>M_{C}$
(d)
$\frac{\Delta Q}{\Delta t}=K A\left(\frac{\Delta T}{\Delta x}\right)=K \pi r^{2}\left(\frac{\Delta T}{l}\right) \propto \frac{r^{2}}{l}$
As $\frac{r^{2}}{l}$ is maximum for (d), it is the correct choice.
(a)

Internal energy of the gas remains constant, hence

$$
\begin{aligned}
T_{2} & =T \\
p_{1} V_{1} & =p_{2} V_{2} \\
p \cdot \frac{V}{2} & =p_{2} V_{2} \\
p_{2} & =\frac{p}{2}
\end{aligned}
$$

Using $\quad p_{1} V_{1}=p_{2} V_{2}$
(d)

The square root of \bar{v}^{2} is called the root mean square velocity (rms) speed of the molecules.

$$
\begin{aligned}
v_{\mathrm{rms}}=\sqrt{\bar{v}^{2}} & =\sqrt{\frac{v_{1}^{2}+v_{2}^{2}+v_{3}^{3}+v_{4}^{4}}{4}} \\
& =\sqrt{\frac{(1)^{2}+(2)^{2}+(3)^{2}+(4)^{2}}{4}} \\
& =\sqrt{\frac{1+4+9+16}{4}}=\sqrt{\frac{30}{4}}=\sqrt{\frac{15}{2}} \mathrm{kms}^{-1}
\end{aligned}
$$

(b)

Using Newton's law of cooling,
$\log \frac{\theta_{2}-\theta_{0}}{\theta_{1}-\theta_{0}}=-K t$
$\log \frac{40-\theta_{0}}{50-\theta_{0}}=-K \times 5$
$\log \frac{33.33-\theta_{0}}{40-\theta_{0}}=-K \times 5$
From Eqs.(i) and (ii),
$\frac{40-\theta_{0}}{50-\theta_{0}}=\frac{33.33-\theta_{0}}{40-\theta_{0}}$
On solving, we get
$\theta_{0}=19.95^{\circ} \mathrm{C} \approx 20^{\circ} \mathrm{C}$
(c)

1. The dotted line in the diagram shows that there is no derivation in the value of $\frac{p V}{n T}$ for different temperature T_{1} and T_{2} for increasing pressure so, this gas behaves ideally. Hence, dotted line corresponds to 'ideal' gas behavior.
2. At high temperature, the derivation of the gas is less and at low temperature the derivation of gas is more. In the graph, derivation for T_{2} is greater than for T_{1}. Thus,

$$
T_{1}>T_{2}
$$

3. Since, the two curves intersect at dotted line so, the value of $\frac{p V}{n T}$ at that point on the y-axis is same for all gases.
(d)

Since $v_{r m s} \propto \sqrt{T}$. Also mean square velocity $\overline{v^{2}}=v_{r m s}^{2}$
(b)
$v_{r m s} \propto \frac{1}{\sqrt{M}} \Rightarrow V_{H}>V_{N}>V_{O}\left[\because M_{H}<M_{N}<M_{O}\right]$
$P_{f}=2 p+\bar{p}$
Saturated vapour pressure will not change if temperature remains constant.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	A	A	C	D	B	B	D	D	C		

Q.	11	12	13	14	15	16	17	18	19	20
A.	A	D	A	D	B	A	C	D	B	B

