CLASS: XIth
Date:
Solutions

Topic :- KINETIC THEORY

1

2
(d)

Let initial conditions $=V, T$
And final conditions $=V^{\prime}, T^{\prime}$
By Charle's law $V \propto T$ [P remains constant]
$\frac{V}{T}=\frac{V^{\prime}}{T^{\prime}} \Rightarrow \frac{V}{T}=\frac{V^{\prime}}{1.2 T^{\prime}} \Rightarrow V^{\prime}=1.2 \mathrm{~V}$
But as per question, volume is reduced by 10% means
$V^{\prime}=0.9 \mathrm{~V}$
So percentage of volume leaked out

$$
=\frac{(1.2-0.9) V}{1.2 V} \times 100=25 \%
$$

(c)

As temperature requirement is not given so, the molecule of a triatomic gas has a tendency of rotating about any of three coordinate axes. So, it has 6 degrees of freedom; 3 translational and 3 rotational.

Thus,
(3 translational +3 rotational) at room temperature.
(a)

According to Gay Lussac's law $p \propto T$

$$
\begin{array}{cc}
\therefore & \frac{d p}{p} \times 100=\frac{d T}{T} \times 100 \\
& 1=\frac{1}{T} \times 100 \\
\Rightarrow & T=100 \mathrm{~K}
\end{array}
$$

(c)

Specific heat at constant pressure $\left(C_{p}\right)$ is the amount of heat (Q) required to raise n moles of substance by $\Delta \theta$ when pressure is kept constant. Then

$$
C_{p}=\frac{Q}{n_{\Delta} \theta}
$$

Given, $Q=70 \mathrm{cal}, n=2$,
$\Delta \theta=(35-35)^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$

$$
\therefore \quad C_{p}=\frac{70}{2 \times 5}=7 \mathrm{cal} \mathrm{~mol}^{-1}-\mathrm{K}^{-1}
$$

From Mayer's formula $C_{p}-C_{V}=R$
where R is gas constant ($=2 \mathrm{cal} \mathrm{mol}^{-1}$)
$\therefore \quad 7-C_{V}=2$
$\Rightarrow \quad C_{V}=5 \mathrm{cal} \mathrm{mol}^{-1}-\mathrm{K}^{-1}$
Hence, amount of heat required at constant volume $\left(C_{V}\right)$ is

$$
\begin{aligned}
Q^{\prime} & =n C_{V} \Delta \theta \\
Q^{\prime} & =2 \times 5 \times 5=50 \mathrm{cal}
\end{aligned}
$$

(b)

$v_{r m s} \propto \sqrt{T}$; To double the $r m s$ velocity temperature should be made four times, i.e., $T_{2}=4 T_{1}=4(273+0)=1092 \mathrm{~K}=819^{\circ} \mathrm{C}$
(b)

In a given mass of the gas

$$
n=\frac{p V}{k T}
$$

k being Boltzmann's constant.
(d)
$P V=N k T \Rightarrow \frac{N_{A}}{N_{B}}=\frac{P_{A} V_{A}}{P_{B} V_{B}} \times \frac{T_{B}}{T_{A}}$
$\Rightarrow \frac{N_{A}}{N_{B}}=\frac{P \times V \times(2 T)}{2 P \times \frac{V}{4} \times T}=\frac{4}{1}$
(b)
$V P^{3}=$ constant $=k \Rightarrow P=\frac{k}{V^{1 / 3}}$
Also $P V=\mu R T \Rightarrow \frac{k}{V^{1 / 3}} \cdot V=\mu R T \Rightarrow V^{2 / 3}=\frac{\mu R T}{k}$

Hence $\left(\frac{V_{1}}{V_{2}}\right)^{2 / 3}=\frac{T_{1}}{T_{2}} \Rightarrow\left(\frac{V}{27 V}\right)^{2 / 3}=\frac{T}{T_{2}} \Rightarrow T_{2}=9 T$
(d)

Vander waal's equation is followed by real gases
(b)

Molecular mass of $\mathrm{He} ; \mathrm{M}=4 \mathrm{~g}$
\Rightarrow Molar value of $C_{V}=M c_{V}=4 \times 3=12 \frac{J}{\text { mole } \text { - kelvin }}$
At constant volume $P \propto T$, therefore on doubling the pressure temperature also doubles i.e., $T_{2}=2 T_{1} \Rightarrow \Delta T=T_{2}-T_{1}=273 \mathrm{~K}$

Also $(\Delta Q)_{V}=\mu C_{V} \Delta T=\frac{1}{2} \times 12 \times 273=1638 \mathrm{~J}$
(a)

Here, $\mathrm{h}_{1}=50 \mathrm{~cm}, t_{1}=50^{\circ} \mathrm{C}$
$\mathrm{h} 2=60 \mathrm{~cm}, t_{2}=100^{\circ} \mathrm{C}$
Now, $\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=\frac{d_{2}}{d_{1}}=\frac{d_{0}}{1+\gamma t_{2}} \times \frac{1+\gamma t_{1}}{d_{0}}$
$\frac{50}{60}=\frac{1+\gamma \times 50}{1+\gamma \times 100}$
$\therefore \gamma=\frac{1}{200}=0.005^{\circ} \mathrm{C}^{-1}$
(d)

Vander Waal's gas constant $b=4 \times$ total volume of all the molecules of the gas in the enclosure
Or $b=4 \times N \times \frac{4}{3} \pi\left(\frac{d}{2}\right)^{3}=\frac{2}{3} \pi N d^{3}$

$$
=\frac{2}{3} \times 3.14 \times 6.02 \times 10^{23} \times\left(2.94 \times 10^{-10}\right)^{3}=32 \times 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}
$$

(a)

From ideal gas equation

$$
\begin{aligned}
& p V=n k T \\
& p=\frac{n}{V} k T
\end{aligned}
$$

Here, $\frac{n}{V}=5 / \mathrm{cm}^{3}=5 \times 10^{6} / \mathrm{m}^{3}$

$$
\begin{aligned}
\therefore \quad & p=\left(5 \times 10^{6} / \mathrm{m}^{3}\right)\left(1.38 \times 10^{-23} / \mathrm{JK}^{-1}\right) \times 3 \mathrm{~K} \\
& p=20.7 \times 10^{-17} \mathrm{Nm}^{-2}
\end{aligned}
$$

(d)

Escape velocity from the earth's surface is $11.2 \mathrm{~km} / \mathrm{sec}$
So, $v_{r m s}=v_{\text {escape }}=\sqrt{\frac{3 R T}{M}} \Rightarrow T=\frac{\left(v_{\text {escape }}\right)^{2} \times M}{3 R}$
$=\frac{\left(11.2 \times 10^{3}\right)^{2} \times\left(2 \times 10^{-3}\right)}{3 \times 8.31}=10063 \mathrm{~K}$
(d)

$$
v=\sqrt{\frac{\gamma P}{\rho}}=\sqrt{\frac{\frac{5}{3} \times 10^{3}}{2.6}}=25 \mathrm{~m} / \mathrm{s}
$$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	D	C	C	A	A	C	D	A	C	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	D	B	D	B	A	D	A	D	D			

