

CLASS : XIth Date : SUBJECT : PHYSICS DPP No. : 5

Topic :- KINETIC THEORY

- 1. A mixture of 2 moles of helium gas (atomic mass = 4 *amu*), and 1 mole of argon gas (atomic
mass = 40*amu*) is kept at 300K in a container. The ratio of the *rms* speeds $\left[\frac{V_{rms}(helium)}{V_{rms}(argon)}\right]$ is
a) 0.32 b) 0.45 c) 2.24 d) 3.16
- 2. The value of the gas constant (*R*) calculated from the perfect gas equation is 8.32 *joules/g* mole *K*, whereas its value calculated from the knowledge of *C_P* and *C_V* of the gas is 1.98 *cal/g* mole *K*. From this data, the value of *J* is

 a) 4.16 *J/cal*b) 4.18 *J/cal*c) 4.20 *J/cal*d) 4.22 *J/cal*

	uj 110 j j out	,) / Cat	0) 1120	<i>jγοαι</i>	aj 1122 j/(
3.	S.I. unit of universal gas	onstant is					
	a) <i>cal/</i> °C b)]/mo	l	c) J ma	$bl^{-1}K^{-1}$	d) <i>J/kg</i>	
4.	In Boyle's law what remai <mark>ns constant</mark>						
	a) <i>PV</i> b)TV		c) $\frac{V}{T}$		d) $\frac{P}{T}$	

- 5. To what temperature should the hydrogen at 327°C be cooled at constant pressure, so that the root mean square velocity of its molecules becomes half of its previous value?
 - a)-123°C b)123°C c) -100°C d)0°C
- 6. Two gases *A* and *B* having same pressure *p*, volume *V* and absolute temperature *T* are mixed. If the mixture has the volume and temperature as *V* and *T* respectively, then the pressure of the mixture is
 - a) 2p b) p c) $\frac{p}{2}$ d) 4p
- 7. The density (ρ) versus pressure (P) of a given mass of an ideal gas is shown at two temperatures T_1 and T_2

Then relation between T_1 and T_2 may be a) $T_1 > T_2$ b) $T_2 > T_1$ c) $T_1 = T_2$ d) All the three are possible

8. The gas in vessel is subjected to a pressure of 20 atmosphere at a temperature 27°C. The pressure of the gas in a vessel after one half of the gas is released from the vessel and the temperature of the remainder is raised by 50°C is
a) 8.5 atm
b) 10.8 atm
c) 11.7 atm
d) 17 atm

9. On any planet, the presence of atmosphere implies (C_{rms} = root mean square velocity of molecules and V_e = escape velocity)
a) C_{rms} << V_e b) C_{rms} > V_e c) C_{rms} = V_e d) C_{rms} = 0

10. The degrees of freedom of a stationary rigid body about its axis will be
a) Oneb) Twoc) Threed) Four

- 12. An electron tube was sealed off during manufacture at a pressure of $1.2 \times 10^{-7}mm$ of
mercury at 27°C. Its volume is $100 \ cm^3$. The number of molecules that remain in the tube is
a) 2×10^{16} b) 3×10^{15} c) 3.86×10^{11} d) 5×10^{11}
- 13. The average kinetic energy of hydrogen molecules at 300 K is E. At the same temperature,
the average kinetic energy of oxygen molecules will be
a) E/4b) E/16c) Ed) 4E
- 14. The temperature of an ideal gas is increased from 27°C to 927°C. The root mean square speed of its molecules becomesa) Twiceb) Halfc) Four timesd) One-fourth
- 15. A given mass of a gas is allowed to expand freely until its volume becomes double. If C_b and C_a are the velocities of sound in this gas before and after expansion respectively, then C_a is equal to

a) $2C_b$ b) $\sqrt{2}C_b$ c) C_b d) $\frac{1}{\sqrt{2}}C_b$

16. For a gas at a temperature *T* the root-mean-square velocity v_{rms} , the most probable speed v_{mp} , and the average speed v_{av} obey the relationship

a) $v_{av} > v_{rms} > v_{mp}$ b) $v_{rms} > v_{av} > v_{mp}$ c) $v_{mp} > v_{av} > v_{rms}$ d) $v_{mp} > v_{rms} > v_{av}$

17. Two chambers containing m_1 and m_2 gram of a gas at pressures p_1 and p_2 respectively are put in communication with each other, temperature remaining constant. The common pressure reached will be

a)
$$\frac{p_1 p_2 (m_1 + m_2)}{p_2 m_1 + p_1 m_2}$$
 b) $\frac{p_1 p_2 m_1}{p_2 m_1 + p_1 m_2}$ c) $\frac{m_1 m_2 (p_1 + p_2)}{p_2 m_1 + p_1 m_2}$ d) $\frac{m_1 m_2 p_2}{p_2 m_1 + p_1 m_2}$

- 18. The root mean square speed of the molecules of a diatomic gas is *v*. When the temperature is doubled, the molecules dissociate into two atoms. The new root mean square speed of the atom is a) $\sqrt{2}v$ b) *v* c) 2*v* d) 4*v*
- 19. The ends of 2 different materials with their thermal conductivities, radii of cross section and length all in the ratio of 1 :2 maintained at temperature difference. If the rate of the flow of heat in the longer rod is 4 cals⁻¹, that in the shorter rod in cals⁻¹ will be

 a) 1
 b) 2
 c) 8
 d) 6
- 20. An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behavior. The variation of $\frac{PV}{RT}$ with *P* is shown in the diagram. The correct variation will correspond to $\frac{PV/RT}{2.0} = A$

