CLASS : XIth
SUBJECT : PHYSICS
Date:

Topic :- KINETIC THEORY

1. A mixture of 2 moles of helium gas (atomic mass $=4 \mathrm{amu}$), and 1 mole of argon gas (atomic mass $=40 \mathrm{amu})$ is kept at 300 K in a container. The ratio of the $r m s$ speeds $\left[\frac{V_{r m s}(\text { helium })}{V_{r m s}(\text { argon })}\right]$ is
a) 0.32
b) 0.45
c) 2.24
d) 3.16
2. The value of the gas constant (R) calculated from the perfect gas equation is 8.32 joules $/ g$ mole K, whereas its value calculated from the knowledge of C_{P} and C_{V} of the gas is $1.98 \mathrm{cal} /$ g mole K. From this data, the value of J is
a) $4.16 \mathrm{~J} / \mathrm{cal}$
b) $4.18 \mathrm{~J} / \mathrm{cal}$
c) $4.20 \mathrm{~J} / \mathrm{cal}$
d) $4.22 \mathrm{~J} / \mathrm{cal}$
3. S.I. unit of universal gas constant is
a) $\mathrm{cal} /{ }^{\circ} \mathrm{C}$
b) J / mol
c) $J \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
d) $/ / \mathrm{kg}$
4. In Boyle's law what remains constant
a) PV
b) TV
c) $\frac{V}{T}$
d) $\frac{P}{T}$
5. To what temperature should the hydrogen at $327^{\circ} \mathrm{C}$ be cooled at constant pressure, so that the root mean square velocity of its molecules becomes half of its previous value?
a) $-123^{\circ} \mathrm{C}$
b) $123^{\circ} \mathrm{C}$
c) $-100^{\circ} \mathrm{C}$
d) $0^{\circ} \mathrm{C}$
6. Two gases A and B having same pressure p, volume V and absolute temperature T are mixed. If the mixture has the volume and temperature as V and T respectively, then the pressure of the mixture is
a) $2 p$
b) p
c) $\frac{p}{2}$
d) $4 p$
7. The density (ρ) versus pressure (P) of a given mass of an ideal gas is shown at two temperatures T_{1} and T_{2}

Then relation between T_{1} and T_{2} may be
a) $T_{1}>T_{2}$
b) $T_{2}>T_{1}$
c) $T_{1}=T_{2}$
d) All the three are possible
8. The gas in vessel is subjected to a pressure of 20 atmosphere at a temperature $27^{\circ} \mathrm{C}$. The pressure of the gas in a vessel after one half of the gas is released from the vessel and the temperature of the remainder is raised by $50^{\circ} \mathrm{C}$ is
a) 8.5 atm
b) 10.8 atm
c) 11.7 atm
d) 17 atm
9. On any planet, the presence of atmosphere implies ($C_{r m s}=$ root mean square velocity of molecules and $V_{e}=$ escape velocity)
a) $C_{r m s} \ll V_{e}$
b) $C_{r m s}>V_{e}$
c) $C_{r m s}=V_{e}$
d) $C_{r m s}=0$
10. The degrees of freedom of a stationary rigid body about its axis will be
a) One
b) Two
c) Three
d) Four
11. From the following $V-T$ diagram we can conclude

a) $P_{1}=P_{2}$
b) $P_{1}>P_{2}$
c) $P_{1}<P_{2}$
d) None of these
12. An electron tube was sealed off during manufacture at a pressure of $1.2 \times 10^{-7} \mathrm{~mm}$ of mercury at $27^{\circ} \mathrm{C}$. Its volume is $100 \mathrm{~cm}^{3}$. The number of molecules that remain in the tube is
a) 2×10^{16}
b) 3×10^{15}
c) 3.86×10^{11}
d) 5×10^{11}
13. The average kinetic energy of hydrogen molecules at 300 K is E. At the same temperature, the average kinetic energy of oxygen molecules will be
a) $E / 4$
b) $E / 16$
c) E
d) $4 E$
14. The temperature of an ideal gas is increased from $27^{\circ} \mathrm{C}$ to $927^{\circ} \mathrm{C}$. The root mean square speed of its molecules becomes
a) Twice
b) Half
c) Four times
d) One-fourth
15. A given mass of a gas is allowed to expand freely until its volume becomes double. If C_{b} and C_{a} are the velocities of sound in this gas before and after expansion respectively, then C_{a} is equal to
a) $2 C_{b}$
b) $\sqrt{2} C_{b}$
c) C_{b}
d) $\frac{1}{\sqrt{2}} C_{b}$
16. For a gas at a temperature T the root-mean-square velocity $v_{r m s}$, the most probable speed $v_{m p}$, and the average speed $v_{a v}$ obey the relationship
a) $v_{a v}>v_{r m s}>v_{m p}$
b) $v_{r m s}>v_{a v}>v_{m p}$
c) $v_{m p}>v_{a v}>v_{r m s}$
d) $v_{m p}>v_{r m s}>v_{a v}$
17. Two chambers containing m_{1} and m_{2} gram of a gas at pressures p_{1} and p_{2} respectively are put in communication with each other, temperature remaining constant. The common pressure reached will be
а) $\frac{p_{1} p_{2}\left(m_{1}+m_{2}\right)}{p_{2} m_{1}+p_{1} m_{2}}$
b) $\frac{p_{1} p_{2} m_{1}}{p_{2} m_{1}+p_{1} m_{2}}$
c) $\frac{m_{1} m_{2}\left(p_{1}+p_{2}\right)}{p_{2} m_{1}+p_{1} m_{2}}$
d) $\frac{m_{1} m_{2} p_{2}}{p_{2} m_{1}+p_{1} m_{2}}$
18. The root mean square speed of the molecules of a diatomic gas is v. When the temperature is doubled, the molecules dissociate into two atoms. The new root mean square speed of the atom is
a) $\sqrt{2} v$
b) v
c) $2 v$
d) $4 v$
19. The ends of 2 different materials with their thermal conductivities, radii of cross section and length all in the ratio of $1: 2$ maintained at temperature difference. If the rate of the flow of heat in the longer rod is 4 cals $^{-1}$, that in the shorter rod in cals ${ }^{-1}$ will be
a) 1
b) 2
c) 8
d) 6
20. An experiment is carried on a fixed amount of gas at different temperatures and at high pressure such that it deviates from the ideal gas behavior. The variation of $\frac{P V}{R T}$ with P is shown in the diagram. The correct variation will correspond to

a) Curve A
b) Curve B
c) Curve C
d) Curve D

