CLASS : XIth
Solutions

Topic :- KINETIC THEORY

1
(d)
$\frac{V_{r m s H e}}{V_{r m s A r}}=\frac{\sqrt{\frac{3 R T}{m_{H e}}}}{\sqrt{\frac{3 R T}{m_{A r}}}}=\sqrt{\frac{m_{A r}}{m_{H e}}}=\sqrt{\frac{40}{4}}=\sqrt{10} \approx 3.16$
(c)

We know that $C_{P}-C_{V}=\frac{R}{J}$
$\Rightarrow J=\frac{R}{C_{P}-C_{V}}$
$C_{P}-C_{V}=1.98 \frac{\mathrm{cal}}{g_{-m o l}^{-K}}$
$R=8.32 \frac{J}{g_{-} \text {mol }-K}$
$\therefore J=\frac{8.32}{1.98}=4.20 \mathrm{~J} / \mathrm{cal}$
(c)
S.I. unit of R is $J / \mathrm{mol}-K$
(a)

According to Boyle's law $P V=$ constant
(a)

$$
\begin{aligned}
& v_{\mathrm{rms}} \propto \sqrt{\frac{3 R T}{M}} \\
& \begin{aligned}
\Rightarrow & \quad \frac{T \propto v_{\mathrm{rms}}^{2}}{T_{1}} \\
\Rightarrow & {\left[\frac{v_{2}}{v_{1}}\right]^{2}=\frac{1}{4} \Rightarrow T_{2}=\frac{T_{1}}{4}=\frac{273+327}{4} } \\
& =150 \mathrm{~K}=-123^{\circ} \mathrm{C}
\end{aligned}
\end{aligned}
$$

(a)

The total pressure exerted by a mixture of non-reacting gases occupying a vessel
is equal to the sum of the individual pressure which each gas exert if it alone occupied the same volume at a given temperature.
For two gases,

$$
p=p_{1}+p_{2}=p+p=2 p
$$

(b)

According to ideal gas equation $P V=n R T$
$P V=\frac{m}{M} R T, P=\frac{\rho}{M} R T$ or $\frac{\rho}{P}=\frac{M}{R T}$ or $\frac{\rho}{P} \propto \frac{1}{T}$
Here, $\frac{\rho}{P}$ represent the slope of graph
Hence $T_{2}>T_{1}$
(c)

For ideal gas, on free expansion there is no change in temperature. Hence $C_{a}=C_{b}$
(a)
$v_{r m s} \propto \sqrt{T}, \frac{v_{2}}{v_{1}}=\sqrt{\frac{T_{2}}{T_{1}}} \Rightarrow v_{2}=\sqrt{\frac{(273+927)}{(273+27)}} v_{1} \Rightarrow v_{2}=2 v_{1}$
(c)
$E \propto T$
(b)

In case of given graph, V and T are related as $V=a T-b$, where a and b are constants.
From ideal gas equation, $P V=\mu R T$
We find $P=\frac{\mu R T}{a T-b}=\frac{\mu R}{a-b / T}$
Sinec $T_{2}>T_{1}$, therefore $P_{2}<P_{1}$
(c)

Gas equation for N molecules $P V=N k T$
$\Rightarrow N=\frac{P V}{k T}=\frac{1.2 \times 10^{-10} \times 13.6 \times 10^{3} \times 10 \times 10^{-4}}{1.38 \times 10^{-23} \times 300}$
$=3.86 \times 10^{11}$
(a)

Since $c_{r m s} \ll V_{e}$, hence molecules do not escape out
(c)
$P V=\mu R T=\frac{m}{M} R T \Rightarrow P \propto m T$
$\Rightarrow \frac{P_{2}}{P_{1}}=\frac{m_{2}}{m_{1}} \frac{T_{2}}{T_{1}}=\frac{1}{2} \times \frac{(273+27+50)}{(273+27)}=\frac{7}{12}$
$\Rightarrow P_{2}=\frac{7}{12} P_{1}=\frac{7}{12} \times 20=11.67 \mathrm{~atm} . \approx 11.7 \mathrm{~atm}$
(b)
$v_{r m s}>v_{a v}>v_{m p}$
(a)

According to Boyle's law, $p V=k$ (a constant)
Or $p_{p}^{\frac{m}{p}}=k \quad$ or $\quad p=\frac{p m}{k}$
Or $p=\frac{p}{k}$ (where, $\frac{k}{m}=k$ a constant)
So, $\rho_{1}=\frac{p_{1}}{k}$ and $V_{1} \frac{p_{1}}{k}=\frac{m_{1}}{p_{1}}=\frac{m_{1}}{p_{1} / k}=\frac{k m_{1}}{\rho_{1}}$
Similarly , $V_{2}=\frac{k m_{2}}{p_{2}}$
Total volume $=V_{1}+V_{2}=k\left(\frac{m_{1}}{p_{1}}+\frac{m_{2}}{p_{2}}\right)$
Let p be the common pressure and ρ be the common density of mixture. Then
$\rho=\frac{m_{1}+m_{2}}{V_{1}+V_{2}}=\frac{m_{1}+m_{2}}{k\left(\frac{m_{1}}{P_{1}}+\frac{m_{2}}{P_{2}}\right)}$
$\therefore p=k \rho=\frac{m_{1}+m_{2}}{\frac{m_{1}}{P_{1}}+\frac{m_{2}}{P_{2}}}=\frac{P_{1} P_{2}\left(m_{1}+m_{2}\right)}{\left(m_{1} P_{2}+m_{2} P_{1}\right)}$
(c)
$v_{r m s}=\sqrt{\frac{3 R T}{M}}$. According to problem T will become $2 T$ and M will becomes $M / 2$ so the value of $v_{r m s}$ will increase by $\sqrt{4}=2$ times, i.e., new root mean square velocity will be 2
(a)

Here, $\frac{K_{1}}{K_{2}}=\frac{1}{2}, \frac{r_{1}}{r_{2}}=\frac{1}{2}$
$\therefore \frac{A_{1}}{A_{2}}=\frac{1}{4}$
$\frac{d x_{1}}{d x_{2}}=\frac{1}{2}, \frac{d Q_{2}}{d t}=4$ cals $^{-1}, \frac{d Q_{1}}{d t}=?$
$\frac{d Q_{2} / d t}{d Q_{1} / d t}=\frac{K_{2} A_{2} d T / d x_{2}}{K_{1} A_{1} d T / d x_{1}}=\frac{K_{2}}{K_{1}} \frac{A_{2}}{A_{1}} \frac{d x_{1}}{d x_{2}}$
$=2 \times 4 \times \frac{1}{2}=4$
$\frac{d Q_{1}}{d t}=\frac{d Q_{2} / d t}{4}=\frac{4}{4}=1 \mathrm{cals}^{-1}$
(b)

At lower pressure we can assume that given gas behaves as ideal gas so $\frac{P V}{R T}=$ constant but when pressure increases, the decrease in volume will not take place in same proportion so $\frac{P V}{R T}$ will increase

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	D	C	C	A	A	A	B	C	A	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	C	C	A	C	B	A	C	A	B			

