CLASS : XIth Date :

(a)

DPP DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : PHYSICS DPP No. : 4

Topic :- KINETIC THEORY

1

A monoatomic gas molecule has only three translational degrees of freedom

2 **(b)**

$$\gamma_{\text{mix}} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 \cdot 1} + \frac{\mu_2 \gamma_2}{\gamma_2 \cdot 1}}{\frac{\mu_1}{\gamma_1 \cdot 1} + \frac{\mu_2}{\gamma_2 \cdot 1}} = \frac{\frac{3 \times 1.3}{(1.3 - 1)} + \frac{2 \times 1.4}{(1.4 - 1)}}{\frac{3}{(1.3 - 1)} + \frac{2}{(1.4 - 1)}} = 1.33$$
(b)

3

At critical temperature the horizontal portion in P - V curve almost vanishes as at temperature T_2 . Hence the correct answer will be (b)

$$v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{(v_{rms})_{H_2}}{(v_{rms})_{He}} = \sqrt{\frac{M_{He}}{M_{H_2}}} = \sqrt{\frac{4}{2}} = \frac{\sqrt{2}}{1}$$

5

(a)

When electric spark is passed, hydrogen reads with oxygen to form water (H_2O) . Each gram of hydrogen reacts with eight grams of oxygen. Thus 96 *gm* of oxygen will be totally consumed together with 12 *gm* of hydrogen. The gas left in the vessel will be 2 *gm* of hydrogen *i.e.*

Number of moles $\mu = \frac{2}{2} = 1$ Using $PV = \mu RT \Rightarrow P \propto \mu \Rightarrow \frac{P_2}{P_1} = \frac{\mu_2}{\mu_1}$ (μ_1 = Initial number of moles = 7 + 3 = 10 and μ_2 = Final number of moles = 1) $\Rightarrow \frac{P_2}{1} = \frac{1}{10} \Rightarrow P_2 = 0.1 atm$

6

(a)
$$v_{rms} = \sqrt{\frac{3RT}{M}} \Rightarrow \frac{v_2}{v_1} = \sqrt{\frac{T_2}{T_1}} = \sqrt{\frac{(273+90)}{(273+27)}} = 1.1$$

% increase $= \left(\frac{v_2}{v_1} - 1\right) \times 100 = 0.1 \times 100 = 10\%$

7

(c)

Ideal gas equation is given by pV = nRT...(i) For oxygen, p = 1 atm, V = 1 L, $n = n_{02}$ Therefore, Eq. (i) becomes $1 \times 1 = n_{02}RT$:. $n_{02} = \frac{1}{RT}$ \Rightarrow For nitrogen p = 0.5 atm, V = 2 L, $n = n_N$ $0.5 \times 2 = n_{N_2}RT$:. $n_{N2} = \frac{1}{RT}$ \Rightarrow For mixture of gas $p_{\rm mix}V_{\rm mix} = n_{\rm mix}RT$ $n_{\rm mix} = n_{02} + n_{N2}$ Here, $p_{\rm min}V_{\rm min} = 1 = 1$:. ⇒

$$\frac{p_{\text{mix}} v_{\text{mix}}}{RT} = \frac{1}{RT} + \frac{1}{RT}$$

$$p_{\text{mix}} V_{\text{mix}} = 2$$

$$(V_{\text{mix}} = 1)$$

8

(d)

(c)

Let T_0 be the initial temperature of the black body $\therefore \ \lambda_0 T_0 = b \text{ (Wien's law)}$ Power radiated, $P_0 = CT_0^4$, where, *C* is constant. If *T* is new temperature of black body, then $\frac{3\lambda_0}{4}T = b = \lambda_0 T_0 \text{ or } T = \frac{4}{3} T_0$ Power radiated, $P = CT^4 = CT_0^4 \left(\frac{4}{3}\right)^4$ $P = P_0 \times \frac{256}{81}$ or $\frac{P}{P_0} = \frac{256}{81}$

$$PV = \frac{m}{M}RT \Rightarrow V \propto mT \Rightarrow \frac{V_1}{V_2} = \frac{m_1}{m_2} \cdot \frac{T_1}{T_2}$$
$$= \frac{2V}{V} = \frac{m}{m_2} \times \frac{100}{200} \Rightarrow m_2 = \frac{m}{4}$$

10 (c)

At constant temperature $PV = \text{constant} \Rightarrow P \propto \frac{1}{V}$

11 (a) $v_{rms} \propto \frac{1}{\sqrt{M}} \Rightarrow (v_{rms})_1 < (v_{rms})_2 < (v_{rms})_3$ also in mixture temperature of each gas will be same, hence kinetic energy also remains same

$$\frac{E_1}{E_2} = \frac{T_1}{T_2} = \frac{300}{450} = \frac{2}{3}$$

$$PV = \mu RT = \frac{m}{M} RT \Rightarrow P = \frac{d}{M} RT \left[\text{Density } d = \frac{m}{V} \right]$$
$$\Rightarrow \frac{P}{dT} = \text{constant or } \frac{P_1}{d_1 T_1} = \frac{P_2}{d_2 T_2}$$

14

(d)

$$P \propto T \Rightarrow \frac{P_2}{P_1} = \frac{T_2}{T_1} = \frac{(273 + 100)}{(273 + 0)} = \frac{373}{273}$$
$$\Rightarrow P_2 = \frac{760 \times 373}{273} = 1038mm$$

Since temperature is constant, so v_{rms} remains same

16 (c)

 $\frac{V}{T}$ = constant

This is another form of Charles' law. Hence, variation of volume with temperature is as shown.

Hence, correct graph will be (C).

17 (d)

Argon is a monoatomic gas so it has only translational energy

19 (c)

According to the Dalton's law of partial pressure, the total pressure will be $P_1 + P_2 + P_3$

At constant pressure, the volume of a given mass of a gas is directly proportional

20 (d)

Kinetic energy \propto Temperature

$$\Rightarrow \frac{E_1}{E_2} = \frac{T_1}{T_2} \Rightarrow \frac{E_1}{E_2} = \frac{(273 + 27)}{(273 + 927)} = \frac{300}{1200} = \frac{1}{4}$$
$$\Rightarrow E_2 = 4E_1$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	А	В	В	А	А	A	С	D	С	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	А	В	А	D	С	С	D	D	С	D

