CLASS : XIth
Solutions

Topic :- KINETIC THEORY

(a)

A monoatomic gas molecule has only three translational degrees of freedom
(b)
$\gamma_{\text {mix }}=\frac{\frac{\mu_{1} \gamma_{1}}{\gamma_{1}-1}+\frac{\mu_{2} \gamma_{2}}{\gamma_{2}-1}}{\frac{\mu_{1}}{\gamma_{1}-1}+\frac{\mu_{2}}{\gamma_{2}-1}}=\frac{\frac{3 \times 1.3}{(1.3-1)}+\frac{2 \times 1.4}{(1.4-1)}}{\frac{3}{(1.3-1)}+\frac{2}{(1.4-1)}}=1.33$
(b)

At critical temperature the horizontal portion in P - V curve almost vanishes as at temperature T_{2}. Hence the correct answer will be (b)
(a)
$v_{r m s} \propto \frac{1}{\sqrt{M}} \Rightarrow \frac{\left(v_{r m s}\right)_{H_{2}}}{\left(v_{r m s}\right)_{H e}}=\sqrt{\frac{M_{H e}}{M_{H_{2}}}}=\sqrt{\frac{4}{2}}=\frac{\sqrt{2}}{1}$
(a)

When electric spark is passed, hydrogen reads with oxygen to form water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Each gram of hydrogen reacts with eight grams of oxygen. Thus 96 gm of oxygen will be totally consumed together with 12 gm of hydrogen. The gas left in the vessel will be 2 $g m$ of hydrogen i.e.
Number of moles $\mu=\frac{2}{2}=1$
Using $P V=\mu R T \Rightarrow P \propto \mu \Rightarrow \frac{P_{2}}{P_{1}}=\frac{\mu_{2}}{\mu_{1}}$
($\mu_{1}=$ Initial number of moles $=7+3=10$ and $\mu_{2}=$ Final number of moles $=1$)
$\Rightarrow \frac{P_{2}}{1}=\frac{1}{10} \Rightarrow P_{2}=0.1 \mathrm{~atm}$
(a)
$v_{r m s}=\sqrt{\frac{3 R T}{M}} \Rightarrow \frac{v_{2}}{v_{1}}=\sqrt{\frac{T_{2}}{T_{1}}}=\sqrt{\frac{(273+90)}{(273+27)}}=1.1$
$\%$ increase $=\left(\frac{v_{2}}{v_{1}}-1\right) \times 100=0.1 \times 100=10 \%$
(c)

Ideal gas equation is given by

$$
\begin{equation*}
p V=n R T \tag{i}
\end{equation*}
$$

For oxygen, $p=1 \mathrm{~atm}, V=1 \mathrm{~L}, n=n_{O_{2}}$
Therefore, Eq. (i) becomes
$\therefore \quad 1 \times 1=n_{O_{2}} R T$
$\Rightarrow \quad n_{O_{2}}=\frac{1}{R T}$
For nitrogen $p=0.5 \mathrm{~atm}, V=2 \mathrm{~L}, n=n_{N}$
$\therefore \quad 0.5 \times 2=n_{N 2} R T$
$\Rightarrow \quad n_{N 2}=\frac{1}{R T}$
For mixture of gas

$$
\begin{array}{ll}
& p_{\text {mix }} V_{\text {mix }}=n_{\text {mix }} R T \\
\text { Here, } & n_{\text {mix }}=n_{O_{2}}+n_{N 2} \\
\therefore & \frac{p_{\text {mix }} V_{\text {mix }}}{R T}=\frac{1}{R T}+\frac{1}{R T} \\
\Rightarrow \quad & p_{\text {mix }} V_{\text {mix }}=2
\end{array}
$$

(d)

Let T_{0} be the initial temperature of the black body
$\therefore \lambda_{0} T_{0}=b$ (Wien's law)
Power radiated, $P_{0}=C T_{0}^{4}$, where, C is constant.
If T is new temperature of black body, then
$\frac{3 \lambda_{0}}{4} T=b=\lambda_{0} T_{0}$ or $T=\frac{4}{3} T_{0}$
Power radiated, $P=C T^{4}=C T_{0}^{4}\left(\frac{4}{3}\right)^{4}$
$P=P_{0} \times \frac{256}{81}$ or $\frac{P}{P_{0}}=\frac{256}{81}$
(c)
$P V=\frac{m}{M} R T \Rightarrow V \propto m T \Rightarrow \frac{V_{1}}{V_{2}}=\frac{m_{1}}{m_{2}} \cdot \frac{T_{1}}{T_{2}}$
$=\frac{2 V}{V}=\frac{m}{m_{2}} \times \frac{100}{200} \Rightarrow m_{2}=\frac{m}{4}$
(c)

At constant temperature $P V=$ constant $\Rightarrow P \propto \frac{1}{V}$
(a)
$v_{r m s} \propto \frac{1}{\sqrt{M}} \Rightarrow\left(v_{r m s}\right)_{1}<\left(v_{r m s}\right)_{2}<\left(v_{r m s}\right)_{3}$ also in mixture temperature of each gas will be
same, hence kinetic energy also remains same
(b)
$\frac{E_{1}}{E_{2}}=\frac{T_{1}}{T_{2}}=\frac{300}{450}=\frac{2}{3}$
(a)
$P V=\mu R T=\frac{m}{M} R T \Rightarrow P=\frac{d}{M} R T\left[\right.$ Density $\left.d=\frac{m}{V}\right]$
$\Rightarrow \frac{P}{d T}=$ constant or $\frac{P_{1}}{d_{1} T_{1}}=\frac{P_{2}}{d_{2} T_{2}}$
(d)
$P \propto T \Rightarrow \frac{P_{2}}{P_{1}}=\frac{T_{2}}{T_{1}}=\frac{(273+100)}{(273+0)}=\frac{373}{273}$
$\Rightarrow P_{2}=\frac{760 \times 373}{273}=1038 \mathrm{~mm}$
(c)

Since temperature is constant, so $v_{r m s}$ remains same
(c)

At constant pressure, the volume of a given mass of a gas is directly proportional to its absolute temperature (T).

ie., $\quad \frac{V}{T}=$ constant
This is another form of Charles' law. Hence, variation of volume with temperature is as shown.
Hence, correct graph will be (C).
(d)

Argon is a monoatomic gas so it has only translational energy
(c)

According to the Dalton's law of partial pressure, the total pressure will be $P_{1}+P_{2}+P_{3}$
(d)

Kinetic energy \propto Temperature

$$
\begin{aligned}
& \Rightarrow \frac{E_{1}}{E_{2}}=\frac{T_{1}}{T_{2}} \Rightarrow \frac{E_{1}}{E_{2}}=\frac{(273+27)}{(273+927)}=\frac{300}{1200}=\frac{1}{4} \\
& \Rightarrow E_{2}=4 E_{1}
\end{aligned}
$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	B	B	A	A	A	C	D	C	C
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	B	A	D	C	C	D	D	C	D

