Class : XIth
Date :

Topic :- KINETIC THEORY

1
(d)
$\gamma_{\text {mixture }}=\frac{\frac{\mu_{1} \gamma_{1}}{\gamma_{1}-1}+\frac{\mu_{2} \gamma_{2}}{\gamma_{2}-1}}{\frac{\mu_{1}}{\gamma_{1}-1}+\frac{\mu_{2}}{\gamma_{2}-1}}$
$\mu_{1}=$ moles of helium $=\frac{16}{4}=4$
$\mu_{2}=$ moles of oxygen $=\frac{16}{32}=\frac{1}{2}$
$\Rightarrow \gamma_{\text {mix }}=\frac{\frac{4 \times 5 / 3}{\frac{5}{3}-1}+\frac{1 / 2 \times 7 / 5}{\frac{7}{5}-1}}{\frac{4}{\frac{5}{3}-1}+\frac{1 / 2}{\frac{7}{5}-1}}=1.62$
(a)

Mean free path, $\lambda=\frac{1}{\sqrt{2} \pi d^{2} n}$
Where, $n=$ Number of molecules per unit volume
$d=$ Diameter of the molecules
(b)

Speed of sound in gases in given by
$v_{\text {sound }}=\sqrt{\frac{\gamma P}{\rho}} \Rightarrow \frac{v_{1}}{v_{2}}=\sqrt{\frac{\rho_{2}}{\rho_{1}}}=\sqrt{\frac{d_{2}}{d_{1}}}$
(c)
$n_{1} C_{v 1} \Delta T_{1}=n_{2} C_{v 2} \Delta T_{2}$
$\Rightarrow n_{1} \times \frac{3}{2} R \times 10=n_{2} \times \frac{5}{2} R \times 6 \Rightarrow \frac{n_{1}}{n_{2}}=1$
(a)

We treat water like a solid. For each atom average energy is $3 k_{B} T$. Water molecule has three atoms, two hydrogen and one oxygen. The total energy of one mole of water is
$U=3 \times 3 k_{B} T \times N_{A}=9 R T \quad\left[\because k_{B}=\frac{R}{N_{A}}\right]$
\therefore Heat capacity per mole of water is
$C=\frac{\Delta Q}{\Delta^{T}}=\frac{\Delta^{U}}{\Delta^{T}}=9 R$
(a)
K.E. is function of temperature. So $\frac{E_{H_{2}}}{E_{O_{2}}}=\frac{1}{1}$
(c)

According to kinetic theory of gases the temperature of a gas is a measure of the kinetic energies of the molecules of the gas.
(c)

At constant volume
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \Rightarrow T_{2}=\left(\frac{P_{2}}{P_{1}}\right) T_{1}$
$\Rightarrow T_{2}=\left(\frac{3 P}{P}\right) \times(273+35)=3 \times 308=924 K=651^{\circ} \mathrm{C}$
(d)
$\frac{3}{2} k T=1 \mathrm{eV} \Rightarrow T=\frac{2}{3} \frac{\mathrm{eV}}{\mathrm{k}}=\frac{\frac{2}{3} \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23}}=7.7 \times 10^{3} \mathrm{~K}$
(b)

Vander Waal's gas equation for μ mole of real gas
$\left(P+\frac{\mu^{2} a}{V^{2}}\right)(V-\mu b)=\mu R T$
$P=\left(\frac{\mu R T}{V-\mu b}-\frac{\mu^{2} a}{V^{2}}\right)$
Given equation,
$P=\left(\frac{R T}{2 V-b}=\frac{a}{4 b^{2}}\right)$
On comparing the given equation with this standard equation, we get
$\mu=\frac{1}{2}$
Hence, $\mu=\frac{m}{M}$
\Rightarrow mass of gas, $m=\mu M=\frac{1}{2} \times 44=22 g$
(d)
$C_{P}=\left(\frac{f}{2}+1\right) R=\left(\frac{5}{2}+1\right) R=\frac{7}{2} R$
(c)

$$
\frac{R}{C_{P}}=\frac{R}{7 / 2 R}=\frac{2}{7} \quad\left[\because C_{P}=\frac{7}{2} R\right]
$$

(c)

As temperature decreases to half and volume made twice, hence pressure becomes $\frac{1}{4}$ times
(d)
$p=p_{1}+p_{2}+p_{3}$
$=\left(\frac{n R T}{V}\right)_{\mathrm{O}_{2}}+\left(\frac{n R T}{V}\right)_{\mathrm{N}_{2}}+\left(\frac{n R T}{V}\right)_{\mathrm{CO}_{2}}$
$=\left(n_{0_{2}}+n_{\mathrm{N}_{2}}+n_{\mathrm{CO}_{2}}\right) \frac{R T}{V}$
$=\frac{(0.25+0.5+0.5)(8.31) \times 300}{4 \times 10^{-3}}$
$=7.79 \times 10^{5} \mathrm{Nm}^{-2}$
(a)

$$
\begin{aligned}
& P V=\mu R T=\frac{m}{M} R T \Rightarrow V=\frac{m R T}{M P} \\
& =\frac{2 \times 10^{-3} \times 8.3 \times 300}{32 \times 10^{-3} \times 10^{5}}=1.53 \times 10^{-3} \mathrm{~m}^{3}=1.53 \text { litre }
\end{aligned}
$$

(c)

According to Boyle's law
$\left(P_{1} V_{1}\right)_{\text {At top of the lake }}=\left(P_{2} V_{2}\right)_{\text {At the bottom of the lake }}$
$\Rightarrow P_{1} V_{1}=\left(P_{1}+h\right) V_{2} \Rightarrow 10 \times \frac{4}{3} \pi\left(\frac{5 r}{4}\right)^{3}$
$\Rightarrow(10+h) \times \frac{4}{3} \pi r^{3} \Rightarrow h=\frac{610}{64}=9.53 \mathrm{~m}$
(d)

We have $\quad v_{\text {rms }}=\sqrt{\frac{3 R T}{M}}$; at $T=T_{0}(\mathrm{NTP})$

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T_{0}}{M}}
$$

But at temperature T,

$$
\begin{aligned}
& & v_{\mathrm{rms}} & =2 \times \sqrt{\frac{3 R T_{0}}{M}} \\
\Rightarrow & & \sqrt{\frac{3 R T}{M}} & =2 \sqrt{\frac{3 R T_{0}}{M}} \\
\Rightarrow & & \sqrt{T} & =\sqrt{4 T_{0}} \\
\text { or } & & T & =4 T_{0} \\
& & T & =4 \times 273 \mathrm{~K}=1092 \mathrm{~K}
\end{aligned}
$$

$$
\therefore \quad T=819^{\circ} \mathrm{C}
$$

(b)
$E=\frac{f}{2} R T ; f=5$ for diatomis gas $\Rightarrow E=\frac{5}{2} R T$
20
(d)

Average kinetic energy
$E=\frac{3}{2} k T \Rightarrow \frac{E_{1}}{E_{2}}=\frac{T_{1}}{T_{2}}=\frac{(273-23)}{(273+227)}=\frac{250}{500}=\frac{1}{2}$
$\Rightarrow E_{2}=2 E_{1}=2 \times 5 \times 10^{-14}=10 \times 10^{-14} \operatorname{erg}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	A	B	C	A	A	C	C	D	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	D	C	C	D	A	C	D	B	D	

